Tomography-Based Heat And Mass Transport Characterization Of Complex Porous Materials For Solar Power And Fuel Generation

نویسندگان

  • S. Haussener
  • A. Steinfeld
چکیده

Transport phenomena in porous media are pertinent to thermal and thermochemical processes for power and fuel generation using concentrated solar energy. The porous media serve as insulator, radiant absorbers, heat exchangers, catalyst carriers, reactants, and/or reaction sites. Volume-averaging models for porous media, commonly applied for process simulations and optimization, rely heavily on the a-priori determination of their effective transport properties, which in turn depend strongly on the morphology of the porous media. A combined experimental-numerical methodology is applied to accurately determine these effective properties. The exact 3D geometrical structure is obtained by computed tomography and applied in subsequent direct pore-level numerical simulations of heat and mass transfer using Monte Carlo and finite volume techniques. Three examples of materials widely used in solar applications are selected: (i) a reacting packed bed of carbonaceous materials undergoing solardriven gasification; (ii) a ceramic foam for a solar pressurized air receiver coupled to a gas turbine; and (iii) an anisotropic ceramic foam for a solar H2O/CO2-splitting thermochemical cycle. A comprehensive characterization of morphology and heat/mass transport properties is accomplished via Monte Carlo and finite volume techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosit...

متن کامل

Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing

Keywords: Solar energy Solar fuels Heat and mass transfer Porous media Computed tomography Morphology a b s t r a c t The performance of high-temperature solar reactors incorporating porous ceramic materials that serve as radiative absorbers and chemical reaction sites can be improved significantly by tailoring their pore structure. We investigated the changes in their effective heat and mass t...

متن کامل

Synthesis and Characterization of Mechanical Behavior and Thermal Shock Resistance of Macro-Porous SiC Solar Absorber

The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used ...

متن کامل

Combined effect of hall current and chemical reaction on MHD flow through porous medium with heat generation past an impulsively started vertical plate with constant wall temperature and mass diffusion

Unsteady flow with magneto-hydrodynamics and heat generation through porous medium past an impulsively started vertical plate with constant wall temperature and mass diffusion is considered here. The effect studied is a combination of Hall current and chemical reaction. The motivation behind this study is the applications of such kind of problems in industry. In many industrial applications ele...

متن کامل

MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/‎sink

The heat and mass transfer analysis for MHD Casson fluid boundary layer flow over a permeable stretching sheet through a porous medium is carried out. The effect of non-uniform heat generation/absorption and chemical reaction are considered in heat and mass transport equations correspondingly. The heat transfer analysis has been carried out for two different heating processes namely; the prescr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012