Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons

نویسندگان

  • Dominik Schötzau
  • Thomas P. Wihler
چکیده

Over the last few years, several mixed discontinuous Galerkin finite element methods (DGFEM) have been proposed for the discretization of incompressible fluid flow problems. We mention here only the piecewise solenoidal discontinuous Galerkin methods introduced in [5,25], the local discontinuous Galerkin methods of [12,11], and the interior penalty methods studied in [24,33,18]. Some of the main motivations that led to the above methods are the following: First of all, the discontinuous nature of the finite element spaces allows one to easily treat convective terms by suitable upwind fluxes, similarly to the original discontinuous Galerkin discretizations of (non-linear) hyperbolic equations (see [13,10,14] and the references therein). Thus,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-dGFEM for second-order mixed elliptic problems in polyhedra

We prove exponential rates of convergence of hp-dG interior penalty (IP) methods for second-order elliptic problems with mixed boundary conditions in polyhedra which are based on axiparallel, σ-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial degree distributions of μ-bounded variation. Compared to homogeneous Dirichlet boundary conditions in [10, 11], for problems wi...

متن کامل

hp Discontinuous Galerkin Time Stepping For Parabolic Problems

The algorithmic pattern of the hp Discontinuous Galerkin Finite Element Method (DGFEM) for the time semidiscretization of abstract parabolic evolution equations is presented. In combination with a continuous hp discretization in space we obtain a fully discrete hp-scheme for the numerical solution of parabolic problems. Numerical examples for the heat equation in a two dimensional domain confir...

متن کامل

Mixed hp-DGFEM for Incompressible Flows

We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.

متن کامل

hp-DGFEM for Second Order Elliptic Problems in Polyhedra II: Exponential Convergence

The goal of this paper is to establish exponential convergence of hp-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the conver...

متن کامل

Discontinuous Galerkin Methods for Partial Differential Equations

Day 1: Monday, September 26, 2011 Hybridized DG Method and Mimetic Finite Differences Franco Brezzi IUSS and IMATI-CNR, Pavia Via Ferrata 1, 27100 Pavia [email protected] Abstract: The talk will discuss the relationships between certain variants of Mimetic Finite Differences and the Hybridized version of DG methods for some very simple model problem. The talk will discuss the relationships be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2003