Effects of population size and mutation rate on the evolution of mutational robustness.
نویسندگان
چکیده
It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by contrast, selection is more effective at removing deleterious mutants and fitness would be improved by eliminating mechanisms that mask the effect of deleterious mutations and thus impede their removal. Here, we test whether these predictions are supported in experiments with evolving populations of digital organisms. Digital organisms are self-replicating programs that inhabit a virtual world inside a computer. Like their organic counterparts, digital organisms mutate, compete, evolve, and adapt by natural selection to their environment. In this study, 160 populations evolved at different combinations of mutation rate and population size. After 10(4) generations, we measured the mutational robustness of the most abundant genotype in each population. Mutational robustness tended to increase with mutation rate and to decline with population size, although the dependence with population size was in part mediated by a negative relationship between fitness and robustness. These results are independent of whether genomes were constrained to their original length or allowed to change in size.
منابع مشابه
Selection for mutational robustness in finite populations.
We investigate the evolutionary dynamics of a finite population of RNA sequences replicating on a neutral network. Despite the lack of differential fitness between viable sequences, we observe typical properties of adaptive evolution, such as increase of mean fitness over time and punctuated-equilibrium transitions, after initial mutation-selection balance has been reached. We find that a produ...
متن کاملFundamental Properties of the Evolution of Mutational Robustness
Evolution on neutral networks of genotypes has been found in models to concentrate on genotypes with high mutational robustness, to a degree determined by the topology of the network. Here analysis is generalized beyond neutral networks to arbitrary selection and parent-offspring transmission. In this larger realm, geometric features determine mutational robustness: the alignment of fitness wit...
متن کاملEvolution of mutational robustness.
We review recent advances in the understanding of the mutation-selection balance of asexual replicators. For over 30 years, population geneticists thought that an expression derived by Kimura and Maruyama in 1966 fully solved this problem. However, Kimura and Maruyama's result is only correct in the absence of neutral mutations. The inclusion of neutral mutations leads to a wealth of interestin...
متن کاملDoes Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?
Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models...
متن کاملEvolution of Genome Size in Asexual Digital Organisms.
Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 61 3 شماره
صفحات -
تاریخ انتشار 2007