Negative shift in the glycine reversal potential mediated by a Ca2+- and pH-dependent mechanism in interneurons.
نویسندگان
چکیده
Cartwheel cells are glycinergic auditory interneurons which fire Na(+)- and Ca(2+)-dependent spike bursts, termed complex spikes, and which synapse on both principal cells and one another. The reversal potential for glycine (E(gly)) can be hyperpolarizing or depolarizing in cartwheel cells, and many cells are even excited by glycine. We explored the role of spike activity in determining E(gly) in mouse cartwheel cells using gramicidin perforated-patch recording. E(gly) was found to shift toward more negative potentials after a period of complex spiking or Ca(2+) spiking induced by depolarization, thus enhancing glycine's inhibitory effect for approximately 30 s following cessation of spiking. Combined perforated patch electrophysiology and imaging studies showed that the negative E(gly) shift was triggered by a Ca(2+)-dependent intracellular acidification. The effect on E(gly) was likely caused by bicarbonate-Cl(-) exchanger-mediated reduction in intracellular Cl(-), as H(2)DIDS and removal of HCO(3)(-)/CO(2) inhibited the negative E(gly) shift. The outward Cl(-) flux underlying the negative shift in E(gly) opposed a positive shift triggered by passive Cl(-) redistribution during the depolarization. Thus, a Ca(2+)-dependent mechanism serves to maintain or enhance the strength of inhibition in the face of increased excitatory activity.
منابع مشابه
Inhibition of sympathetic preganglionic neurons by spinal glycinergic interneurons.
Intracellular and whole-cell patch-clamp recordings were obtained from sympathetic preganglionic neurons in rat spinal cord slices. Perfusion of selective ionotropic and metabotropic excitatory amino acid agonists induced depolarizing responses in all neurons. In approximately 20% of neurons the application of these agonists also evoked inhibitory postsynaptic potentials. The application of the...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملIntracellular pH buffering shapes activity-dependent Ca2+ dynamics in dendrites of CA1 interneurons.
Voltage-gated calcium (Ca) channels are highly sensitive to cytosolic H+, and Ca2+ influx through these channels triggers an activity-dependent fall in intracellular pH (pHi). In principle, this acidosis could act as a negative feedback signal that restricts excessive Ca2+ influx. To examine this possibility, whole cell current-clamp recordings were taken from rat hippocampal interneurons, and ...
متن کامل1S, 3R-ACPD induces a region of negative slope conductance in the steady-state current-voltage relationship of hippocampal pyramidal cells.
Synaptic responses mediated by metabotropic glutamate receptors (mGluRs) display a marked voltage-dependent increase in amplitude when neurons are moderately depolarized beyond membrane potential. We have investigated the basis for this apparent nonlinear behavior by activating mGluRs with 1S, 3R-1-aminocyclopentane-1, 3-dicarboxylate (1S, 3R-ACPD; 10 microM) in CA3 pyramidal cells from rat hip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 37 شماره
صفحات -
تاریخ انتشار 2009