Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA.
نویسندگان
چکیده
FtsK is a homohexameric, RecA-like dsDNA translocase that plays a key role in bacterial chromosome segregation. The FtsK regulatory γ-subdomain determines directionality of translocation through its interaction with specific 8 base pair chromosomal sequences [(KOPS); FtsK Orienting/Polarizing Sequence(s)] that are cooriented with the direction of replication in the chromosome. We use millisecond-resolution ensemble translocation and ATPase assays to analyze the assembly, initiation, and translocation of FtsK. We show that KOPS are used to initiate new translocation events rather than reorient existing ones. By determining kinetic parameters, we show sigmoidal dependences of translocation and ATPase rates on ATP concentration that indicate sequential cooperative coupling of ATP hydrolysis to DNA motion. We also estimate the ATP coupling efficiency of translocation to be 1.63-2.11 bp of dsDNA translocated/ATP hydrolyzed. The data were used to derive a model for the assembly, initiation, and translocation of FtsK hexamers.
منابع مشابه
Structure and DNA-binding properties of the Bacillus subtilis SpoIIIE DNA translocase revealed by single-molecule and electron microscopies
SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. Th...
متن کاملThe N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell
UNLABELLED Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication termination region of the chromosome to midcell, where it facilitates chromosome unlinkin...
متن کاملDouble-stranded DNA translocation: structure and mechanism of hexameric FtsK.
FtsK is a DNA translocase that coordinates chromosome segregation and cell division in bacteria. In addition to its role as activator of XerCD site-specific recombination, FtsK can translocate double-stranded DNA (dsDNA) rapidly and directionally and reverse direction. We present crystal structures of the FtsK motor domain monomer, showing that it has a RecA-like core, the FtsK hexamer, and als...
متن کاملP 031 Using linked multimers to understand the action of the FtsK DNA translocase
FtsK is a dsDNA translocase that plays a vital role in chromosome dimer resolution in Escherichia coli, and is part of the RecA-like hexameric motor family. The aim of this work is to understand how the subunits work together to reach the exceptional speed of 5,000 bp/s. To decipher the sequence of ATP hydrolysis within the hexamer, we have developed a new tool, consisting of covalently linked ...
متن کاملSeparating speed and ability to displace roadblocks during DNA translocation by FtsK
FtsK translocates dsDNA directionally at >5 kb/s, even under strong forces. In vivo, the action of FtsK at the bacterial division septum is required to complete the final stages of chromosome unlinking and segregation. Despite the availability of translocase structures, the mechanism by which ATP hydrolysis is coupled to DNA translocation is not understood. Here, we use covalently linked transl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 47 شماره
صفحات -
تاریخ انتشار 2010