Iteration-complexity of first-order augmented Lagrangian methods for convex conic programming

نویسندگان

  • Zhaosong Lu
  • Zirui Zhou
چکیده

In this paper we consider a class of convex conic programming. In particular, we propose an inexact augmented Lagrangian (I-AL) method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Nesterov’s optimal first-order method. We show that the total number of first-order iterations of the proposed I-AL method for computing an ǫ-KKT solution is at most O(ǫ−7/4). We also propose a modified I-AL method and show that it has an improved iteration-complexity O(ǫ−1 log ǫ), which is so far the lowest complexity bound among all first-order I-AL type of methods for computing an ǫ-KKT solution. Our complexity analysis of the I-AL methods is mainly based on an analysis on inexact proximal point algorithm (PPA) and the link between the I-AL methods and inexact PPA. It is substantially different from the existing complexity analyses of the first-order I-AL methods in the literature, which typically regard the I-AL methods as an inexact dual gradient method. Compared to the mostly related I-AL methods [11], our modified I-AL method is more practically efficient and also applicable to a broader class of problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Augmented Lagrangian Method for Conic Convex Programming

We propose a new first-order augmented Lagrangian algorithm ALCC for solving convex conic programs of the form min { ρ(x) + γ(x) : Ax− b ∈ K, x ∈ χ } , where ρ : Rn → R ∪ {+∞}, γ : Rn → R are closed, convex functions, and γ has a Lipschitz continuous gradient, A ∈ Rm×n, K ⊂ Rm is a closed convex cone, and χ ⊂ dom(ρ) is a “simple” convex compact set such that optimization problems of the form mi...

متن کامل

Iteration-complexity of first-order augmented Lagrangian methods for convex programming

This paper considers a special class of convex programming (CP) problems whose feasible regions consist of a simple compact convex set intersected with an affine manifold. We present first-order methods for this class of problems based on an inexact version of the classical augmented Lagrangian (AL) approach, where the subproblems are approximately solved by means of Nesterov’s optimal method. ...

متن کامل

First-order methods for constrained convex programming based on linearized augmented Lagrangian function

First-order methods have been popularly used for solving large-scale problems. However, many existing works only consider unconstrained problems or those with simple constraint. In this paper, we develop two first-order methods for constrained convex programs, for which the constraint set is represented by affine equations and smooth nonlinear inequalities. Both methods are based on the classic...

متن کامل

PENNON A Generalized Augmented Lagrangian Method for Semidefinite Programming

This article describes a generalization of the PBM method by Ben-Tal and Zibulevsky to convex semidefinite programming problems. The algorithm used is a generalized version of the Augmented Lagrangian method. We present details of this algorithm as implemented in a new code PENNON. The code can also solve second-order conic programming (SOCP) problems, as well as problems with a mixture of SDP,...

متن کامل

PENNON: A code for convex nonlinear and semidefinite programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in PENNON and detai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018