Neural networks with a continuous squashing function in the output are universal approximators

نویسندگان

  • Juan Luis Castro
  • Carlos Javier Mantas
  • José Manuel Benítez
چکیده

In 1989 Hornik as well as Funahashi established that multilayer feedforward networks without the squashing function in the output layer are universal approximators. This result has been often used improperly because it has been applied to multilayer feedforward networks with the squashing function in the output layer. In this paper, we will prove that also this kind of neural networks are universal approximators, i.e. they are capable of approximating any Borel measurable function from one finite dimensional space into (0,1)" to any desired degree of accuracy, provided sufficiently many hidden units are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilayer feedforward networks are universal approximators

This paper rigorously establishes thut standard rnultiluyer feedforward networks with as f&v us one hidden layer using arbitrary squashing functions ure capable of upproximating uny Bore1 measurable function from one finite dimensional space to another to any desired degree of uccuracy, provided sujficirntly muny hidden units are available. In this sense, multilayer feedforward networks are u c...

متن کامل

Universal approximation using incremental constructive feedforward networks with random hidden nodes

According to conventional neural network theories, single-hidden-layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes are universal approximators when all the parameters of the networks are allowed adjustable. However, as observed in most neural network implementations, tuning all the parameters of the networks may cause learning complicated and inefficie...

متن کامل

Neural Networks for Pattern Classification and Universal Approximation

LIAO, YI. Neural Networks for Pattern Classification and Universal Approximation (Under the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle). This dissertation studies neural networks for pattern classification and universal approximation. The objective is to develop a new neural network model for pattern classification, and relax the conditions for Radial-Basis Function networks to...

متن کامل

Wavelet Neural Networks Are Asymptotically Optimal Approximators for Functions of One Variable

| Neural networks are universal approximators. For example, it has been proved (Hornik et al) that for every " > 0, an arbitrary continuous function on a compact set can be "?approximated by a 3-layer neural network. This and other results prove that in principle, any function (e.g., any control) can be implemented by an appropriate neural network. But why neural net-works? In addition to neura...

متن کامل

Artificial neural net attractors

ÐAesthetically appealing patterns are produced by the dynamical behavior of arti®cial neural networks with randomly chosen connection strengths. These feed-forward networks have a single hidden layer of neurons and a single output, which is fed back to the input to produce a scalar time series that is always bounded and often chaotic. Sample attractors are shown and simple computer code is prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2000