Tuning the Degradation Profiles of Poly(l-lactide)-Based Materials through Miscibility

نویسندگان

  • Veluska Arias
  • Anders Höglund
  • Karin Odelius
  • Ann-Christine Albertsson
چکیده

The effective use of biodegradable polymers relies on the ability to control the onset of and time needed for degradation. Preferably, the material properties should be retained throughout the intended time frame, and the material should degrade in a rapid and controlled manner afterward. The degradation profiles of polyester materials were controlled through their miscibility. Systems composed of PLLA blended with poly[(R,S)-3-hydroxybutyrate] (a-PHB) and polypropylene adipate (PPA) with various molar masses were prepared through extrusion. Three different systems were used: miscible (PLLA/a-PHB5 and PLLA/a-PHB20), partially miscible (PLLA/PPA5/comp and PLLA/PPA20/comp), and immiscible (PLLA/PPA5 and PLLA/PPA20) blends. These blends and their respective homopolymers were hydrolytically degraded in water at 37 °C for up to 1 year. The blends exhibited entirely different degradation profiles but showed no diversity between the total degradation times of the materials. PLLA presented a two-stage degradation profile with a rapid decrease in molar mass during the early stages of degradation, similar to the profile of PLLA/a-PHB5. PLLA/a-PHB20 presented a single, constant linear degradation profile. PLLA/PPA5 and PLLA/PPA20 showed completely opposing degradation profiles relative to PLLA, exhibiting a slow initial phase and a rapid decrease after a prolonged degradation time. PLLA/PPA5/comp and PLLA/PPA20/comp had degradation profiles between those of the miscible and the immiscible blends. The molar masses of the materials were approximately the same after 1 year of degradation despite their different profiles. The blend composition and topographical images captured at the last degradation time point demonstrate that the blending component was not leached out during the period of study. The hydrolytic stability of degradable polyester materials can be tailored to obtain different and predetermined degradation profiles for future applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of lactide monomer on the hydrolytic degradation of poly(lactide-co-glycolide) 85L/15G.

The hydrolytic degradation of oriented poly(L-lactide-co-glycolide) 85 L/15 G (PLGA 85/15) sample materials with various amounts of lactide monomer was monitored in vitro at 37 °C. The materials were manufactured from medical grade PLGA 85/15 by a two-step melt extrusion-die drawing process. Results showed that the hydrolytic degradation rate depended highly on the lactide monomer content, whic...

متن کامل

Synthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone

In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...

متن کامل

Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.

Poly(lactide)s [i.e. poly(lactic acid) (PLA)] and lactide copolymers are biodegradable, compostable, producible from renewable resources, and nontoxic to the human body and the environment. They have been used as biomedical materials for tissue regeneration, matrices for drug delivery systems, and alternatives for commercial polymeric materials to reduce the impact on the environment. Since ste...

متن کامل

Phase Behavior of Polylactides in Solvent-Nonsolvent Mixtures

Isothermal phase diagrams for the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA) in combination with several solvent-nonsolvent combinations (dioxane/water, dioxane/methanol, chloroform/methanol, and NMP/water) have been determined. The locations of the liquid-liquid miscibility gap, the solid-liquid miscibility gap and the vitrification boundary in the isotherm...

متن کامل

Rapid fabrication of poly(DL-lactide) nanofiber scaffolds with tunable degradation for tissue engineering applications by air-brushing.

Polymer nanofiber based materials have been widely investigated for use as tissue engineering scaffolds. While promising, these materials are typically fabricated through techniques that require significant time or cost. Here we report a rapid and cost effective air-brushing method for fabricating nanofiber scaffolds using a simple handheld apparatus, compressed air, and a polymer solution. Air...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014