Efficient Lesion Segmentation using Support Vector Machines

نویسندگان

  • Jean-Baptiste Fiot
  • Laurent D. Cohen
  • Parnesh Raniga
  • Jurgen Fripp
چکیده

Support Vector Machines (SVM) are a machine learning technique that has been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines the use of domain knowledge, advanced pre-processing (based on tissue segmentation and atlas propagation) and SVM classification to obtain efficient and accurate WMH segmentation. Features generated from up to four MR modalities (T1-w, T2-w, PD and FLAIR), differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all 4 modalities gave the best overall classification (average Dice scores of 0.54± 0.12, 0.72± 0.06 and 0.82± 0.06 respectively for small, moderate and severe lesion loads, using 3x3x3 neighbourhood intensity features); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52± 0.13, 0.71± 0.08 and 0.81± 0.07 for the same lesion loads and feature type). Furthermore, there was a negligible difference between using 5x5x5 and 3x3x3 features (p = 0.93). Finally, we show that careful consideration of features and preprocessing techniques leads to more efficient classification which outperforms the one based on all features with post-processing, and also saves storage space and computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in th...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)

Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...

متن کامل

On-line one-class support vector machines. An application to signal segmentation

In this paper, we describe an efficient algorithm to sequentially update a density support estimate obtained using one-class support vector machines. The solution provided is an exact solution, which proves to be far more computationally attractive than a batch approach. This deterministic technique is applied to the problem of audio signal segmentation, with simulations demonstrating the compu...

متن کامل

Efficient Brain Tumor Segmentation using Support Vector Machines

Segmentation of anatomical elements of brain is the fundamental problem in health image analysis. The aim of this work is to create an automated method for mind tumor quantification using MRI picture data units using support vector machines. A brain tumor segmentation method has become developed and validate segmentation on 2D & 3D MRI Data. This technique doesn't require any initialization whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012