Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma

نویسندگان

  • Peidang Liu
  • Haizhen Jin
  • Zhirui Guo
  • Jun Ma
  • Jing Zhao
  • Dongdong Li
  • Hao Wu
  • Ning Gu
چکیده

Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitizing effect of deferoxamine on human glioma cells

ABSTRACT Background: Tumor cells exhibit an increased requirement for iron to support their rapid proliferation. Deferoxamine (DFO), an iron chelator, has been reported to have anti-proliferative effects on cancer cells through induction of apoptosis and cell cycle arrest. X-rays also induce apoptosis and cell cycle arrest. However, limited information is available regarding the effect of iron...

متن کامل

Microwave Aided Synthesis of Silver and Gold Nanoparticles and their Antioxidant, Antimicrobial and Catalytic Potentials

Here we reported the extremely simple one-pot synthesis of silver and gold nanoparticles in a rapid manner. Aqueous leaf extract of the most admired energy plant Jatropha curcas is used as reducing agent here. An alternate and safe energy source, house-hold microwave oven constituted the reaction chamber. Silver and gold nanoparticles were characterized by UV-visible, FT-IR, Powder XRD techniqu...

متن کامل

The effect of gold nanoparticles on dose enhancement factor of human intestinal colon cancer HT-29 cells

Introduction: Radiation therapy is an important procedure for treatment of more than half of tumors. One way to increase the efficiency of radiation therapy is application of radiosensitizer at the site of tumor. gold nanoparticles (GNPs) have several characteristics that make them attractive for using with radiation therapy including small size (1–100 nm), biocompatibility, pr...

متن کامل

Evaluation of Blood and Liver Cytotoxicity and Apoptosis-necrosis Induced by Nanochelating Based Silver Nanoparticles in Mouse Model

This study aimed to evaluate the in-vitro and in-vivo biological activities of newly synthesized nanochelating based silver nanoparticles (AgNPs) in mouse model. Nanochelating technology was used to design and synthesize the AgNPs. The animals studies were including the lethal dose (LD50) determination by the intraperitoneal administration in mice, and determination of liver e...

متن کامل

Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells

Glioblastoma multiforme (GBM) continues to be associated with a dismal prognosis despite aggressive treatment. Significant efforts are being made to develop new nanotechnology-based therapeutic and diagnostic agents. Nanoparticles can act directly on cancer cells or as drug carriers to enhance the cancer therapeutic effect. In this study, we investigated the effect of silver nanoparticles (AgNP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016