Fast Kernel Density Independent Component Analysis
نویسنده
چکیده
We develop a super-fast kernel density estimation algorithm (FastKDE) and based on this a fast kernel independent component analysis algorithm (KDICA). FastKDE calculates the kernel density estimator exactly and its computation only requires sorting n numbers plus roughly 2n evaluations of the exponential function, where n is the sample size. KDICA converges as quickly as parametric ICA algorithms such as FastICA. By comparing with state-of-the-art ICA algorithms, simulation studies show that KDICA is promising for practical usages due to its computational efficiency as well as statistical efficiency. Some statistical properties of KDICA are analyzed.
منابع مشابه
Harmonic Source Localization Approach Based on Fast Kernel Entropy Optimization ICA and Minimum Conditional Entropy
Abstract: Based on the fast kernel entropy optimization independent component analysis and the minimum conditional entropy, this paper proposes a harmonic source localization method which aims at accurately estimating harmonic currents and identifying harmonic sources. The injected harmonic currents are estimated by the fast kernel entropy optimization independent component analysis (FKEO-ICA) ...
متن کاملTree-dependent Component Analysis
We present a generalization of independent component analysis (ICA), where instead of looking for a linear transform that makes the data components independent, we look for a transform that makes the data components well fit by a tree-structured graphical model. Treating the problem as a semiparametric statistical problem, we show that the optimal transform is found by minimizing a contrast fun...
متن کاملPerformance comparison of new nonparametric independent component analysis algorithm for different entropic indexes
Most independent component analysis (ICA) algorithms use mutual information (MI) measures based on Shannon entropy as a cost function, but Shannon entropy is not the only measure in the literature. In this paper, instead of Shannon entropy, Tsallis entropy is used and a novel ICA algorithm, which uses kernel density estimation (KDE) for estimation of source distributions, is proposed. KDE is di...
متن کاملRobust Independent Component Analysis Using Quadratic Negentropy
We present a robust algorithm for independent component analysis that uses the sum of marginal quadratic negentropies as a dependence measure. It can handle arbitrary source density functions by using kernel density estimation, but is robust for a small number of samples by avoiding empirical expectation and directly calculating the integration of quadratic densities. In addition, our algorithm...
متن کاملFast Estimation of Nonparametric Kernel Density Through PDDP, and its Application in Texture Synthesis
In thiswork, anewalgorithm isproposed for fast estimationofnonparametricmultivariate kernel density, based on principal direction divisive partitioning (PDDP) of the data space.The goal of the proposed algorithm is to use the finite support property of kernels for fast estimation of density. Compared to earlier approaches, this work explains the need of using boundaries (for partitioning the sp...
متن کامل