Modulation of the reactivity of the essential cysteine residue of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
نویسندگان
چکیده
Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible NAD(P)(+)-dependent oxidation of betaine aldehyde to glycine betaine. In the human opportunistic pathogen Pseudomonas aeruginosa this reaction is an obligatory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. As with every aldehyde dehydrogenase studied so far, BADH possesses an essential cysteine residue involved in the formation of the intermediate thiohemiacetal with the aldehyde substrate. We report here that the chemical modification of this residue is conveniently measured by the loss in enzyme activity, which allowed us to explore its reactivity in a pH range around neutrality. The pH dependence of the observed second-order rate constant of BADH inactivation by methyl methanethiosulphonate (MMTS) suggests that at low pH values the essential cysteine residue exists as thiolate by the formation of an ion pair with a positively charged residue. The estimated macroscopic pK values are 8.6 and 4.0 for the free and ion-pair-forming thiolate respectively. The reactivity towards MMTS of both thiolate forms is notably lower than that of model compounds of similar pK, suggesting a considerable steric inhibition by the structure of the protein. Binding of the dinucleotides rapidly induced a significant and transitory increment of thiolate reactivity, followed by a relatively slow change to an almost unreactive form. Thus it seems that to gain protection against oxidation without compromising catalytic efficiency, BADH from P. aeruginosa has evolved a complex and previously undescribed mechanism, involving several conformational rearrangements of the active site, to suit the reactivity of the essential thiol to the availability of coenzyme and substrate.
منابع مشابه
Novel NADPH-cysteine covalent adduct found in the active site of an aldehyde dehydrogenase.
PaBADH (Pseudomonas aeruginosa betaine aldehyde dehydrogenase) catalyses the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to its corresponding acid, the osmoprotector glycine betaine. This reaction is involved in the catabolism of choline and in the response of this important pathogen to the osmotic and oxidative stresses prevalent in infection sites. The crystal structure of Pa...
متن کاملAldehyde dehydrogenase. Covalent intermediate in aldehyde dehydrogenation and ester hydrolysis.
4-trans-(NN-Dimethylamino)cinnamaldehyde (an aldehyde, DACA) and 4-trans-(NN-dimethylamino)cinnamoylimidazole (an amide, DACI) have been shown to be substrates for human aldehyde dehydrogenase (EC 1.2.1.3) which form chromophoric covalent intermediates. The spectra of covalent intermediates from both the cytoplasmic (E1) and mitochondrial (E2) isoenzymes derived from DACA and DACI were compared...
متن کاملKinetic and Structural Studies on Flavin-dependent Enzymes involved in Glycine Betaine Biosynthesis and Propionate 3-nitronate Detoxification
Flavin-dependent enzymes are characterized by an amazing chemical versatility and play important roles in different cellular pathways. The FAD-containing choline oxidase from Arthrobacter globiformis oxidizes choline to glycine betaine and retains the intermediate betaine aldehyde in the active site. The reduced FAD is oxidized by oxygen. Glycine betaine is an important osmoprotectant accumulat...
متن کاملCrystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.
Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provid...
متن کاملBactericidal Effects of Essential Oils from Clove, Lavender and Geranium on Multi-Drug Resistant Isolates of Pseudomonas aeruginosa
The inhibitory effects of essential oils including clove, lavender and geranium extracted from Eugenia caryophyllata, Lavandula officinalis and Pelargonium graveolens on multidrug resistant isolates of Pseudomonas aeruginosa were investigated. The main constituents of clove, lavander and geranium oil were eugenol (80-90%), 1,8-cineol (13%) and citronellol (45%) respectively. Clove had the most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 361 Pt 3 شماره
صفحات -
تاریخ انتشار 2002