Molecular modelling and footprinting studies of DNA minor groove binders: bisquaternary ammonium heterocyclic compounds.
نویسندگان
چکیده
We report new quantitative footprinting data which reveal differences in binding constants of bisquaternary ammonium heterocyclic compounds (BQA) with AT-rich DNA sites depending on the ligand structure and on the size and sequence of the DNA binding site. In an attempt to understand the dependence of binding affinity on the ligand structure we have performed quantum-chemical AM1 calculations on the BQA compounds and on subunits to explore the conformational space and to calculate the electronic and structural features of individual ligand conformations. Due to the properties of the rotatable backbone bonds, there is a large number of possible conformations with almost equal energy. We present a new method for the calculation of the radius of curvature of molecular structures. Assuming that strong binders should have a shape complementary to the DNA minor groove, this measure is used to select the optimum conformations for DNA-drug binding. The approach yields the correct ligand conformation for SN6999, for which an X-ray DNA-drug structure is known. The curvature of the optimum conformations of all ligands is compared with the experimental binding constants. A correlation is found between curvature and binding constant provided other structural factors do not vary. Therefore, we conclude that within structurally similar BQA compounds the extent of curvature is the relevant quantity which modulates the binding affinity.
منابع مشابه
Structural Factors that Influence the Inhibition of Type II Restriction Enzymes by Minor Groove Binders
The objective of this thesis was to study whether heterocyclic dicationic compounds that are minor groove binders have the ability to inhibit the digestive properties of type II restriction enzymes which bind to the major groove of the DNA. If these compounds do possess the ability to inhibit restriction enzymes, then what factors influence their ability to inhibit the restriction enzymes? The ...
متن کاملDesign, synthesis and antibacterial activity of minor groove binders: the role of non-cationic tail groups.
The design and synthesis of a new class of minor groove binder (MGBs) in which, the cationic tail group has been replaced by a neutral, polar variant including cyanoguanidine, nitroalkene, and trifluoroacetamide groups. Antibacterial activity (against Gram positive bacteria) was found for both the nitroalkene and trifluoroacetamide groups. For the case of the nitroalkene tail group, strong bind...
متن کاملRanking ligand affinity for the DNA minor groove by experiment and simulation.
The structural and thermodynamic basis for the strength and selectivity of the interactions of minor groove binders (MGBs) with DNA is not fully understood. In 2003, we reported the first example of a thiazole-containing MGB that bound in a phase-shifted pattern that spanned six base pairs rather than the usual four (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, ...
متن کاملMolecular Docking and Molecular Dynamics Study of DNA Minor Groove Binders
The fundamental problems in drug discovery are based on the process of molecular recognition by small molecules. The binding specificity of DNA-small molecule is identified mainly by studying the hydrogen bonding and polar interactions. Majority of the minor groove binders and their mechanism of action at the molecular level are not well studied. As these small molecules can act as effective th...
متن کاملSynthesis, biological evaluation, and modeling of dimeric PPI analogues as novel DNA minor groove binders.
A series of symmetrical dimeric proton pump inhibitor (PPI) analogues, designed as novel type DNA minor groove binders, was synthesized and evaluated for anti-tumor activity. Some of these new compounds showed IC(50) values below 10 microM in an in vitro anti-tumor test. A molecular modeling study was performed to confirm the sequence selectivity of these compounds towards AT base pairs in DNA....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anti-cancer drug design
دوره 13 5 شماره
صفحات -
تاریخ انتشار 1998