Weak semi-continuity of the duality product in Sobolev spaces
نویسنده
چکیده
Given a weakly convergent sequence of positive functions in W 1,p 0 (Ω), we prove the equivalence between its convergence in the sense of obstacles and the lower semicontinuity of the term by term duality product associated to (the p-Laplacian of) weakly convergent sequences of p-superharmonic functions of W 1,p 0 (Ω). This result implicitly gives new characterizations for both the convergence in the sense of obstacles of a weakly convergent sequence of positive functions and for the weak l.s.c of the duality product.
منابع مشابه
Semicontinuity of Vectorial Functionals in Orlicz-sobolev Spaces
We study integral vectorial functionals F(u;) ? Z f(x; u(x); Du(x))dx where f satisses quasi-convexity assumption and its growth is controlled in term of N-functions. We obtain semicontinuity results in the weak * topology of Orlicz-Sobolev spaces.
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملNecessary conditions for weak lower semicontinuity on domains with in nite measure ∗
We derive sharp necessary conditions for weak sequential lower semicontinuity of integral functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar eld over a domain in R . An emphasis is put on domains with in nite measure, and the integrand is allowed to assume the value +∞.
متن کاملOn a Restricted Weak Lower Semicontinuity for Smooth Functional on Sobolev Spaces
We study a restricted weak lower semicontinuity property, which we call the (PS)-weak lower semicontinuity, for a smooth integral functional on the Sobolev space along all weakly convergent Palais-Smale sequences of the functional. By the Ekeland variational principle, the (PS)-weak lower semicontinuity is sufficient for the existence of minimizers under the usual coercivity assumption. In gene...
متن کامل(ps)-weak Lower Semicontinuity in One-dimension: a Necessary and Sufficient Condition
The (PS)-weak lower semicontinuity property has been introduced in Vasiliu and Yan [10] for general continuously differentiable functionals on Sobolev spaces in connection with the Ekeland variational principle and the direct method of calculus of variations. In this paper, we give a necessary and sufficient condition of this property for the functionals in one-dimension of the simple type I(u)...
متن کامل