Sensory Experience in Development Balances Excitation and Inhibition to Stabilize Frequency Tuning in Central Auditory Neurons.

نویسندگان

  • Kenjiro Seki
  • Troy Templeton
  • Liisa A Tremere
  • Raphael Pinaud
چکیده

The balance between excitation and inhibition is critical in shaping receptive field tuning properties in sensory neurons and, ultimately, in determining how sensory cues are extracted, transformed and interpreted by brain circuits. New findings suggest that developmentally-regulated, experience-dependent changes in intracortical inhibitory networks are key to defining receptive field tuning properties of auditory cortical neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of auditory cortical synaptic receptive fields.

The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control corti...

متن کامل

Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral con...

متن کامل

Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons.

Intensity-tuned auditory cortex neurons have spike rates that are nonmonotonic functions of sound intensity: their spike rate initially increases and peaks as sound intensity is increased, then decreases as sound intensity is further increased. They are either "unbalanced," receiving disproportionally large synaptic inhibition at high sound intensities; or "balanced," receiving intensity-tuned ...

متن کامل

Title : Tone - evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons

In primary auditory cortex (AI) neurons, tones typically evoke a brief depolarization, which can lead to spiking, followed by a long-lasting hyperpolarization. The extent to which the hyperpolarization is due to synaptic inhibition has remained unclear. Here we report in vivo whole-cell voltage-clamp measurements of tone-evoked excitatory and inhibitory synaptic conductances of AI neurons of th...

متن کامل

Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons.

In primary auditory cortex (AI) neurons, tones typically evoke a brief depolarization, which can lead to spiking, followed by a long-lasting hyperpolarization. The extent to which the hyperpolarization is due to synaptic inhibition has remained unclear. Here we report in vivo whole cell voltage-clamp measurements of tone-evoked excitatory and inhibitory synaptic conductances of AI neurons of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental neuroscience

دوره 2011 5  شماره 

صفحات  -

تاریخ انتشار 2011