Brushite-Forming Mg-, Zn- and Sr-Substituted Bone Cements for Clinical Applications
نویسندگان
چکیده
Calcium phosphate cements have been in clinical use for the last 10 years. Their most salient features include good biocompatibility, excellent bioactivity, self-setting characteristics, low setting temperature, adequate stiffness, and easy shaping to accomodate any complicated geometry. They are commonly used in filling bone defects and trauma surgeries as mouldable paste-like bone substitute materials. Substitution of trace elements, such as Mg, Sr and Zn ions, into the structure of calcium phosphates is the subject of widespread investigation nowadays, because of their impending role in the biological process. Subtle differences in composition and structure of these materials may have a profound effect on their in vivo behaviour. Therefore, the main goal of this paper is to provide a simple, but comprehensive overview of the present achievements relating to brushite-forming cements doped with Mg, Zn and Sr, and to identify new developments and trends. In particular, the influence of ionic substitution on the chemical, physical and biological properties of these materials is discussed.
منابع مشابه
Self-Setting Calcium Orthophosphate Formulations: Cements, Concretes, Pastes and Putties
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases after mixing form a viscous paste that after being implanted sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with un-r...
متن کاملCalcium Orthophosphate Cements and Concretes
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unr...
متن کاملMagnesium substitution in brushite cements for enhanced bone tissue regeneration.
We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in compariso...
متن کاملEvaluation of Calcium Fluoroaluminosilicate Based Glass Ionomer Luting Cements Processed Both by Conventional
Calcium fluoroaluminosilicate glasses (CAS) are used in the formulation of glass ionomer cements for dental applications. However, the cements obtained from CAS glasses were found to be radiolucent. In this study, the influence of substituting Zn, Sr and Mg for Ca of CAS glasses was investigated with respect to the structure and setting characteristics, mechanical properties, and radiopacity of...
متن کاملPreparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite...
متن کامل