Degenerations of ( 1 , 3 ) abelian surfaces and Kummer surfaces
نویسنده
چکیده
We study degenerations of Kummer surfaces associated to certain divisors in Nieto’s quintic threefold and show how they arise from boundary components of a suitable toroidal compactification of the corresponding Siegel modular threefold. The aim of this paper is to study the degenerations of an interesting class of Kummer surfaces in P in terms of degenerations of the corresponding abelian surfaces. The quintic threefold in P given by
منابع مشابه
Heisenberg-invariant Kummer Surfaces Ii
is the closure of the locus parametrizing H22-invariant quartics with 16 skew lines. The smooth surfaces of this type are parametrized by a non-empty open set N s of N . These surfaces are Kummer surfaces associated to abelian surfaces with a (1,3)–polarization. The action of the Heisenberg group on the Kummer surface corresponds to a level-2 structure on the abelian surface. If A is an abelian...
متن کاملKummer Surfaces for the Selfproduct of the Cuspidal Rational Curve
The classical Kummer construction attaches to an abelian surface a K3 surface. As Shioda and Katsura showed, this construction breaks down for supersingular abelian surfaces in characteristic two. Replacing supersingular abelian surfaces by the selfproduct of the rational cuspidal curve, and the sign involution by suitable infinitesimal group scheme actions, I give the correct Kummer-type const...
متن کاملKummer Surfaces and K3 Surfaces with (z/2z) Symplectic Action
In the first part of this paper we give a survey of classical results on Kummer surfaces with Picard number 17 from the point of view of lattice theory. We prove ampleness properties for certain divisors on Kummer surfaces and we use them to describe projective models of Kummer surfaces of (1, d)polarized Abelian surfaces for d = 1, 2, 3. As a consequence we prove that in these cases the Néron–...
متن کاملTwisted Homogeneous Coordinate Rings of Abelian Surfaces via Mirror Symmetry
In this paper we study Seidel’s mirror map for abelian and Kummer surfaces. We find that mirror symmetry leads in a very natural way to the classical parametrization of Kummer surfaces in P. Moreover, we describe a family of embeddings of a given abelian surface into noncommutative projective spaces.
متن کاملThe Euler Characteristic Formula for Logarithmic Minimal Degenerations of Surfaces with Kodaira Dimension Zero and its application
In this paper, the Euler characteristic formula for projective logarithmic minimal degenerations of surfaces with Kodaira dimension zero over a 1-dimensional complex disk is proved under a reasonable assumption and as its application, the singularity of logarithmic minimal degenerations are determined in the abelian or hyperelliptic case. By globalizing this local analysis of singular fibres vi...
متن کامل