Directive-Based Compilers for GPUs

نویسندگان

  • Swapnil Ghike
  • Ruben Gran Tejero
  • María Jesús Garzarán
  • David A. Padua
چکیده

General Purpose Graphics Computing Units can be effectively used for enhancing the performance of many contemporary scientific applications. However, programming GPUs using machine-specific notations like CUDA or OpenCL can be complex and time consuming. In addition, the resulting programs are typically fine-tuned for a particular target device. A promising alternative is to program in a conventional and machine-independent notation extended with directives and use compilers to generate GPU code automatically. These compilers enable portability and increase programmer productivity and, if effective, would not impose much penalty on performance. This paper evaluates two such compilers, PGI and Cray. We first identify a collection of standard transformations that these compilers can apply. Then, we propose a sequence of manual transformations that programmers can apply to enable the generation of efficient GPU kernels. Lastly, using the Rodinia Benchmark suite, we compare the performance of the code generated by the PGI and Cray compilers with that of code written in CUDA. Our evaluation shows that the code produced by the PGI and Cray compilers can perform well. For 6 of the 15 benchmarks that we evaluated, the compiler generated code achieved over 85% of the performance of a hand-tuned CUDA version.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directive-based Heterogeneous Programming A GPU-Accelerated RTM Use Case

Hybrid parallel multicore architectures based on Graphics Processing Units (GPUs) can provide tremendous computing power. Current NVIDIA and AMD Graphics Product Group hardware display a peak performance of hundreds of gigaflops. However, exploiting GPUs from existing applications is a difficult task that requires non-portable rewriting of the code. In this paper, we present HMPP, a Heterogenou...

متن کامل

Multi-GPU Support on Single Node Using Directive-Based Programming Model

Existing studies show that using single GPU can lead to obtaining significant performance gains. We should be able to achieve further performance speedup if we use more than one GPU. Heterogeneous processors consisting of multiple CPUs and GPUs offer immense potential and are often considered as a leading candidate for porting complex scientific applications. Unfortunately programming heterogen...

متن کامل

Comparison of Parallelisation Approaches, Languages, and Compilers for Unstructured Mesh Algorithms on GPUs

Efficiently exploiting GPUs is increasingly essential in scientific computing, as many current and upcoming supercomputers are built using them. To facilitate this, there are a number of programming approaches, such as CUDA, OpenACC and OpenMP 4, supporting different programming languages (mainly C/C++ and Fortran). There are also several compiler suites (clang, nvcc, PGI, XL) each supporting d...

متن کامل

NAS Parallel Benchmarks for GPGPUs Using a Directive-Based Programming Model

The broad adoption of accelerators boosts the interest in accelerator programming. Accelerators such as GPGPUs are optimized for throughput and offer high GFLOPS and memory bandwidth. CUDA has been adopted quite rapidly but it is proprietary and only applicable to GPUs, and the difficulty in writing efficient CUDA code has kindled the necessity to create higher-level programming approaches such...

متن کامل

Velociraptor: A compiler toolkit for numerical programs targeting CPUs and GPUs

Developing compilers that allow scientific programmers to use multicores and GPUs is of increasing interest, however building such compilers requires considerable effort. We present Velociraptor: a portable compiler toolkit that can be used to easily build compilers for numerical programs targeting multicores and GPUs. Velociraptor provides a new high-level IR called VRIR which has been specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014