Crystallographic studies of two alcohol dehydrogenase-bound analogues of thiazole-4-carboxamide adenine dinucleotide (TAD), the active anabolite of the antitumor agent tiazofurin.

نویسندگان

  • H Li
  • W H Hallows
  • J S Punzi
  • V E Marquez
  • H L Carrell
  • K W Pankiewicz
  • K A Watanabe
  • B M Goldstein
چکیده

Thiazole-4-carboxamide adenine dinucleotide (TAD) is the active anabolite of the antitumor drug tiazofurin. Beta-methylene TAD (beta-TAD) is a phosphodiesterase-resistant analogue of TAD, active in tiazofurin-resistant cells. Beta-methylene SAD (beta-SAD) is the active selenium derivative of beta-TAD. Both agents are analogues of the cofactor NAD and are capable of acting as general dehydrogenase inhibitors. Crystal structures of beta-TAD and beta-SAD bound to horse liver alcohol dehydrogenase (LADH) are presented at 2.9 and 2.7 A, respectively. Both complexes crystallize in the orthorhombic space group C222(1) and are isomorphous to apo-LADH. Complexes containing beta-TAD and beta-SAD were refined to crystallographic R values of 15% and 16%, respectively, for reflections between 8 A and the minimum d spacing. Conformations of both inhibitors are similar. beta-TAD and beta-SAD bind to the "open" form of LADH in the normal cofactor-binding cleft between the coenzyme and catalytic domains of each monomer. Binding at the adenosine end of each inhibitor resembles that of NAD. However, the positions of the thiazole and selenazole heterocycles are displaced away from the catalytic Zn cation by approximately 4 A. Close intramolecular S-O and Se-O contacts observed in the parent nucleoside analogues are maintained in both LADH-bound beta-TAD and beta-SAD, respectively. These conformational constraints may influence the binding specificity of the inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of HL60 cell differentiation by tiazofurin and its analogues: characterization and efficacy.

Among inducers of myeloid differentiation for leukemic cells, tiazofurin is of special interest because its mechanism of action is known; it inhibits inosine monophosphate dehydrogenase and thus decreases the guanine nucleotide pool. Reported here are three aspects of tiazofurin induction of myeloid differentiation in HL60 human acute promyelocytic leukemia cells. First, inductive efficacy was ...

متن کامل

Hematological and biochemical action of tiazofurin (NSC 286193) in a case of refractory acute myeloid leukemia.

A patient with refractory acute myeloid leukemia was treated with tiazofurin, an agent that causes inhibition of tumor cell proliferation by depressing GTP concentrations in the malignant cells. The initial dose of 1100 mg/m2 was ineffective clinically and biochemically. Dose escalations to 1650, 2200, and finally 3300 mg/m2 resulted in a marked decrease in the absolute number of blasts without...

متن کامل

Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.

Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less tha...

متن کامل

Furine Metabolism of Human Glioblastoma in Vivo1

The aim of this study was to identify targets for rational chemotherapy of glioblastoma. In order to elucidate differences in the biochemistry of tumor and normal human brain, in vivo pool sizes of purine nucleotides, nucleosides, and nucleobases and of purine metabolizing enzymes in biopsy material from 14 grade IV astrocytomas and 4 normal temporal lobe samples were analyzed. Specimens were c...

متن کامل

Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design.

Inosine monophosphate dehydrogenase (IMPDH) controls a key metabolic step in the regulation of cell growth and differentiation. This step is the NAD-dependent oxidation of inosine 5' monophosphate (IMP) to xanthosine 5' monophosphate, the rate-limiting step in the synthesis of the guanine nucleotides. Two isoforms of IMPDH have been identified, one of which (type II) is significantly up- regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 1994