Optimal Boundary Control for the Evolutionary Navier--Stokes System: The Three-Dimensional Case
نویسندگان
چکیده
Abstract. Optimal boundary control problems for the three-dimensional, evolutionary Navier– Stokes equations in the exterior of a bounded domain are studied. Control is effected through the Dirichlet boundary condition and is sought in a subset of the trace space of velocity fields with almost minimal possible regularity. The control objective is to minimize the drag functional. The existence of an optimal solution is proved. A strong form of an optimality system of equations is derived on the basis of regularity results established in this work for the adjoint Oseen equations with regular initial data which do not satisfy the compatibility conditions.
منابع مشابه
Boundary Value Problems and Optimal Boundary Control for the Navier–stokes System: the Two-dimensional Case∗
We study optimal boundary control problems for the two-dimensional Navier–Stokes equations in an unbounded domain. Control is effected through the Dirichlet boundary condition and is sought in a subset of the trace space of velocity fields with minimal regularity satisfying the energy estimates. An objective of interest is the drag functional. We first establish three important results for inho...
متن کاملInhomogeneous Boundary Value Problems for the Three- Dimensional Evolutionary Navier–Stokes Equations
In this paper, we study the solvability of inhomogeneous boundary value problems for the three-dimensional Oseen and Navier–Stokes equations in the following formulation: given function spaces for Dirichlet boundary conditions, initial values, and right-hand side forcing functions, find function spaces for solutions such that the operator generated by the boundary value problem for the Oseen eq...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 43 شماره
صفحات -
تاریخ انتشار 2005