Pseudo almost periodic solutions for a Lasota-Wazewska model with an oscillating death rate

نویسنده

  • Jianying Shao
چکیده

In this work, we consider a new model describing the survival of red blood cells in animals. Specifically, we study a class of Lasota-Wazewska equation with pseudo almost periodic varying environment and mixed delays. By using the Banach fixed point theorem and some inequality analysis, we find sufficient conditions for the existence, uniqueness and stability of solutions. We generalize some results known for one type of delay and for the LasotaWazewska model with almost periodic and periodic coefficients. An example illustrates the proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model

By means of the Cauchy matrix we give sufficient conditions for the existence and exponential stability of almost periodic solutions for the delay impulsive Lasota–Wazewska model. The impulses are realized at fixed moments of time.

متن کامل

Almost Periodic Solutions for Impulsive Lasota-Wazewska Model with Discontinuous Coefficients

As we know, the coefficients of impulsive Lasota-Wazewska model are always assumed to be continuous, say, periodic and almost periodic. In this paper we consider the case when the coefficients are piecewise almost periodic, and establish an existence and uniqueness theorem of piecewise almost periodic positive solution for this model. Mathematics Subject Classifications: 34C27, 34A37

متن کامل

Almost Periodic Solutions for Lasota-Wazewska Model with Multiple Delays

By means of Mawhin’s continuation theorem of coincidence degree theory, some new and simple sufficient conditions are obtained for the existence of at least one positive almost periodic solution for a class of delayed Lasota-Wazewska model with nonnegative coefficients. Further, by some important inequalities and Lyapunov functional, the permanence and global asymptotical stability of the model...

متن کامل

Existence and Global Attractivity Positive Periodic Solutions for a Discrete Model

Using a fixed point theorem in cones, we obtain conditions that guarantee the existence and attractivity of the unique positive periodic solution for a discrete Lasota-Wazewska model.

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015