Construction of Odd-Variable Resilient Boolean Functions with Optimal Degree
نویسندگان
چکیده
In this paper, we investigate the problem of obtaining new construction methods for resilient Boolean functions. Given n (n odd and n ≥ 35), we firstly provide degree optimized 1-resilient n-variable functions with currently best known nonlinearity. Then we extend our method to obtain m-resilient (m > 1) Boolean functions with degree n − m − 1, we show that these Boolean functions also achieve currently best known nonlinearity. Finally, the algebraic immunity and immunity against fast algebraic attack of the obtained Boolean functions are investigated.
منابع مشابه
Construction of Nonlinear Boolean Functions with Important Cryptographic Properties
This paper addresses the problem of obtaining new construction methods for cryptographically significant Boolean functions. We show that for each positive integer m, there are infinitely many integers n (both odd and even), such that it is possible to construct n-variable, m-resilient functions having nonlinearity greater than 2− 2 n 2 . Also we obtain better results than all published works on...
متن کاملGeneralized Maiorana-McFarland Constructions for Almost Optimal Resilient Functions
In a recent paper [1], Zhang and Xiao describe a technique on constructing almost optimal resilient functions on even number of variables. In this paper, we will present an extensive study of the constructions of almost optimal resilient functions by using the generalized MaioranaMcFarland (GMM) construction technique. It is shown that for any given m, it is possible to construct infinitely man...
متن کاملBoolean functions with all main cryptographic properties
In this paper, we propose a class of 2k-variable Boolean functions which have optimal algebraic degree, very high nonlinearity, and are 1-resilient. Based on our newly proposed conjecture, it can be shown that the algebraic immunity of our functions is at least suboptimal. Moreover, when k is odd, the algebraic immunity is actually optimal, and for even k, we find that the algebraic immunity is...
متن کاملNew Constructions for Resilient and Highly Nonlinear Boolean Functions
We explore three applications of geometric sequences in constructing cryptographic Boolean functions. First, we construct 1-resilient functions of n Boolean variables with nonlinearity 2n−1−2(n−1)/2, n odd. The Hadamard transform of these functions is 3-valued, which limits the efficiency of certain stream cipher attacks. From the case for n odd, we construct highly nonlinear 1-resilient functi...
متن کاملBalanced Boolean Functions with (Almost) Optimal Algebraic Immunity and Very High Nonlinearity
In this paper, we present a class of 2k-variable balanced Boolean functions and a class of 2k-variable 1-resilient Boolean functions for an integer k ≥ 2, which both have the maximal algebraic degree and very high nonlinearity. Based on a newly proposed conjecture by Tu and Deng, it is shown that the proposed balanced Boolean functions have optimal algebraic immunity and the 1-resilient Boolean...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 94-A شماره
صفحات -
تاریخ انتشار 2011