A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity

نویسندگان

  • Romain Cartoni
  • Gulcin Pekkurnaz
  • Chen Wang
  • Thomas L Schwarz
  • Zhigang He
چکیده

Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes) in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

منابع مشابه

The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration

Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this hi...

متن کامل

Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits

Although neuronal regeneration is a highly energy-demanding process, axonal mitochondrial transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility...

متن کامل

Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins

Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...

متن کامل

Cell intrinsic control of axon regeneration.

Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only...

متن کامل

mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth.

UNLABELLED Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017