Uncooperative gait recognition by learning to rank
نویسندگان
چکیده
Gait is a useful biometric because it can operate from a distance and without subject cooperation. However, it is affected by changes in covariate conditions (carrying, clothing, view angle, etc.). Existing methods suffer from lack of training samples, can only cope with changes in a subset of conditions with limited success, and implicitly assume subject cooperation. We propose a novel approach which casts gait recognition as a bipartite ranking problem and leverages training samples from different people and even from different datasets. By exploiting learning to rank, the problem of model over-fitting caused by under-sampled training data is effectively addressed. This makes our approach suitable under a genuine uncooperative setting and robust against changes in any covariate conditions. Extensive experiments demonstrate that our approach drastically outperforms existing methods, achieving up to 14-fold increase in recognition rate under the most difficult uncooperative settings.
منابع مشابه
Gait Recognition by Ranking
The advantage of gait over other biometrics such as face or fingerprint is that it can operate from a distance and without subject cooperation. However, this also makes gait subject to changes in various covariate conditions including carrying, clothing, surface and view angle. Existing approaches attempt to address these condition changes by feature selection, feature transformation or discrim...
متن کاملSpeed Invariance vs. Stability: Cross-Speed Gait Recognition Using Single-Support Gait Energy Image
Gait recognition has recently attracted much attention since it can identify person at a distance without subject cooperation. Walking speed changes, however, cause gait changes in appearance, which significantly drops performance of gait recognition. Considering a speedinvariant property at single-support phases where stride change due to speed changes are mitigated, and a stability against ph...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملA Review on Face and Gait Recognition: System, Data and Algorithms
This chapter reviews two important biometric recognition technologies that have received significant attention recently: face and gait recognition, where individuals are recognized by their faces and the way they walk, respectively. These two technologies are mainly motivated from security-related applications. We first describe typical face and gait recognition systems and three common recogni...
متن کاملHierarchical Modeling with Tensor Inputs
In many real applications, the input data are naturally expressed as tensors, such as virtual metrology in semiconductor manufacturing, face recognition and gait recognition in computer vision, etc. In this paper, we propose a general optimization framework for dealing with tensor inputs. Most existing methods for supervised tensor learning use only rank-one weight tensors in the linear model a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014