Overcoming therapeutic resistance in glioblastoma: the way forward.
نویسندگان
چکیده
Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Patients die from recurrent tumors that have become resistant to therapy. New strategies are needed to design future therapies that target resistant cells. Recent genomic studies have unveiled the complexity of tumor heterogeneity in glioblastoma and provide new insights into the genomic landscape of tumor cells that survive and initiate tumor recurrence. Resistant cells also co-opt developmental pathways and display stem-like properties; hence we propose to name them recurrence-initiating stem-like cancer (RISC) cells. Genetic alterations and genomic reprogramming underlie the innate and adaptive resistance of RISC cells, and both need to be targeted to prevent glioblastoma recurrence.
منابع مشابه
Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.
Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known...
متن کاملA functional screen identifies miRs that induce radioresistance in glioblastomas.
UNLABELLED The efficacy of radiotherapy in many tumor types is limited by normal tissue toxicity and by intrinsic or acquired radioresistance. Therefore, it is essential to understand the molecular network responsible for regulating radiosensitivity/resistance. Here, an unbiased functional screen identified four microRNAs (miR1, miR125a, miR150, and miR425) that induce radioresistance. Consider...
متن کاملDNA Damage and Repair A Functional Screen Identifies miRs That Induce Radioresistance in Glioblastomas
The efficacy of radiotherapy in many tumor types is limited by normal tissue toxicity and by intrinsic or acquired radioresistance. Therefore, it is essential to understand the molecular network responsible for regulating radiosensitivity/resistance. Here, an unbiased functional screen identified four microRNAs (miR1, miR125a, miR150, andmiR425) that induce radioresistance. Considering the clin...
متن کاملConstitutive Expression of MAP Kinase Phosphatase-1 Confers Multi-drug Resistance in Human Glioblastoma Cells
PURPOSE Current treatment of glioblastoma after surgery consists of a combination of fractionated radiotherapy and temozolomide. However, it is difficult to completely remove glioblastoma because it has uncertain boundaries with surrounding tissues. Moreover, combination therapy is not always successful because glioblastoma has diverse resistances. To overcome these limitations, we examined the...
متن کاملConnective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling
Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2017