A Hochschild-cyclic Approach to Additive Higher Chow Cycles

نویسنده

  • JINHYUN PARK
چکیده

Over a field of characteristic zero, we introduce two motivic operations on additive higher Chow cycles: analogues of the Connes boundary B operator and the shuffle product on Hochschild complexes. The former allows us to apply the formalism of mixed complexes to additive Chow complexes building a bridge between additive higher Chow theory and additive K-theory. The latter induces a wedge product on additive Chow groups for which we show that the Connes operator is a graded derivation for the wedge product using a variation of a Totaro’s cycle. Hence, the additive higher Chow groups with the wedge product and the Connes operator form a commutative differential graded algebra. On zero-cycles, they induce the wedge product and the exterior derivation on the absolute Kähler differentials, answering a question of S. Bloch and H. Esnault.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulators on Additive Higher Chow Groups

As an attempt to understand motives over k[x]/(xm), we define the cubical additive higher Chow groups with modulus for all dimensions extending the works of S. Bloch, H. Esnault and K. Rülling on 0-dimensional cycles. We give an explicit construction of regulator maps on the groups of 1-cycles with an aid of the residue theory of A. Parshin and V. Lomadze.

متن کامل

Algebraic Cycles and Additive Dilogarithm

For an algebraically closed field k of characteristic 0, we give a cycle-theoretic description of the additive 4-term motivic exact sequence associated to the additive dilogarithm of J.-L. Cathelineau, that is the derivative of the Bloch-Wigner function, via the cubical additive higher Chow groups under one assumption. The 4-term functional equation of Cathelineau, an additive analogue of the A...

متن کامل

An Additive Version of Higher Chow Groups Une Version Additive Des Groupes De Chow Supérieurs

The cosimplicial scheme ∆• = ∆ →∆1 → → → . . . ; ∆ n := Spec ( k[t0, . . . , tn]/( ∑ ti − t) ) was used in[3] to define higher Chow groups. In this note, we let t tend to 0 and replace ∆• by a degenerate version Q• = Q →Q1 → → → . . . ; Q n := Spec ( k[t0, . . . , tn]/( ∑ ti) ) to define an additive version of the higher Chow groups. For a field k, we show the Chow group of 0-cycles on Q in thi...

متن کامل

The Additive Dilogarithm

A notion of additive dilogarithm for a field k is introduced, based on the K-theory and higher Chow groups of the affine line relative to 2(0). Analogues of the K2-regulator, the polylogarithm Lie algebra, and the `-adic realization of the dilogarithm motive are discussed. The higher Chow groups of 0-cycles in this theory are identified with the Kähler differential forms Ωk. It is hoped that th...

متن کامل

00 7 Additive Higher Chow Groups of Schemes

We show how to make the additive Chow groups of Bloch-Esnault, Rülling and Park into a graded module for Bloch's higher Chow groups, in the case of a smooth projective variety over a field. This yields a a projective bundle formula as well as a blow-up formula for the additive Chow groups of a smooth projective variety. In case the base-field admits resolution of singularieties, these propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008