Improving the GNSS Attitude Ambiguity Success Rate with the Multivariate Constrained LAMBDA Method

نویسنده

  • P. J. Buist
چکیده

GNSS Attitude Determination is a valuable technique for the estimation of platform orientation. To achieve high accuracies on the angular estimations, the GNSS carrier phase data has to be used. These data are known to be affected by integer ambiguities, which must be correctly resolved in order to exploit the higher precision of the phase observables with respect to the GNSS code data. For a set of GNSS antennae rigidly mounted on a platform, a number of nonlinear geometrical constraints can be exploited for the purpose of strengthening the underlying observation model and subsequently improving the capacity of fixing the correct set of integer ambiguities. A multivariate constrained version of the LAMBDA method is presented and tested here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The affine constrained GNSS attitude model and its multivariate integer least-squares solution

A new global navigation satellite system (GNSS) carrier-phase attitude model and its solution are introduced in this contribution. This affine-constrained GNSS attitude model has the advantage that it avoids the computational complexity of the orthonormality-constrained GNSS attitude model, while it still has a significantly improved ambiguity resolution performance over its unconstrained count...

متن کامل

GNSS Attitude Determination for Remote Sensing: On the Bounding of theMultivariate Ambiguity Objective Function

Global Navigation Satellite Systems (GNSS)-based attitude determination is a viable alternative for traditional methods such as gyroscopes. Precise attitude determination using multiple GNSS antennas mounted on a remote sensing platform relies on successful resolution of the integer carrier phase ambiguities. The Multivariate Constrained (MC-) LAMBDA method has been developed for the multivaria...

متن کامل

Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing

Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner...

متن کامل

Attitude determination with low-cost GPS/ INS

Low-cost GNSS receivers with patch antennas track the carrier phases of the GNSS signals with millimeterto centimeter-level accuracy. However, code multipath of several tens of metres, frequent half cycle slips, and receiver clock offsets in the order of milliseconds make reliable kinematic integer ambiguity resolution still challenging. Low-cost inertial sensors are robust against GNSS signal ...

متن کامل

Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011