Coalescence of sleep rhythms and their chronology in corticothalamic networks.

نویسندگان

  • M Steriade
  • F Amzica
چکیده

The cellular substrates of sleep oscillations have recently been investigated by means of multi-site, intracellular and extracellular recordings under anesthesia, and these data have been validated during natural sleep in cats and humans. Although various rhythms occurring during the state of resting sleep (spindle, 7-14 Hz; delta, 1-4 Hz; and slow oscillation, <1 Hz) are conventionally described by using their different frequencies, they are coalesced within complex wave-sequences due to the synchronizing power of the cortically generated slow oscillation (main peak around 0.7 Hz). In intracellular recordings from anesthetized animals, the slow oscillation is characterized by a biphasic sequence consisting of a prolonged hyperpolarization and depolarization. Basically similar patterns are observed by means of extracellular discharges and/or field potentials in naturally sleeping animals and humans. The depolarizing component of the slow oscillation is transferred to the thalamus where it contributes to the synchronization of spindles over widespread territories. The association between the depolarizing component of the slow oscillation and the subsequent sequence of spindle waves forms what is termed the K-complex. The slow oscillation also groups cortically generated delta waves. At variance with previous assumptions that the brain lies for the most part in the dark and a global inhibition occurs in resting sleep, cortical cells are quite active in this behavioral state. This unexpectedly rich activity raises the possibility that, during sleep, the brain is occupied to specify/reorganize circuits and to consolidate memory traces acquired during wakefulness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rouping of Brain Rhythms in Corticothalamic Systems

bstract—Different brain rhythms, with both low-frequency nd fast-frequency, are grouped within complex wave-seuences. Instead of dissecting various frequency bands of he major oscillations that characterize the brain electrical ctivity during states of vigilance, it is conceptually more ewarding to analyze their coalescence, which is due to neuonal interactions in corticothalamic systems. This ...

متن کامل

Integration of low-frequency sleep oscillations in corticothalamic networks.

The corticothalamic system acts as a complex network in promoting the various oscillatory patterns (slow oscillation, spindles, delta) that characterize the state of quiet sleep. Local synchronizing mechanisms of any of the above-mentioned oscillations occur at the site of their genesis, thalamic or cortical. These mechanisms are assisted by the wide-range, synchronized occurrence of the cortic...

متن کامل

The corticothalamic system in sleep.

The transition from wakefulness to NREM sleep is associated with typical signs of brain electrical activity, characterized by prolonged periods of hyperpolarization and increased membrane conductance in thalamocortical (TC) neurons, with the consequence that incoming messages are inhibited and the cerebral cortex is deprived of signals from the outside world. There are three major oscillations ...

متن کامل

Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations

Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that...

متن کامل

Intracortical and corticothalamic coherency of fast spontaneous oscillations.

We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sleep research online : SRO

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1998