High Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations
نویسندگان
چکیده
The positivity-preserving property is an important and challenging issue for the numerical solution of radiative transfer equations. In the past few decades, different numerical techniques have been proposed to guarantee positivity of the radiative intensity in several schemes, however it is difficult to maintain both high order accuracy and positivity. The discontinuous Galerkin (DG) finite element method is a high order numerical method which is widely used to solve the neutron/photon transfer equations, due to its distinguished advantages such as high order accuracy, geometric flexibility, suitability for hand p-adaptivity, parallel efficiency, and a good theoretical foundation for stability and error estimates. In this paper, we construct arbitrarily high order accurate DG schemes which preserve positivity of the radiative intensity in the simulation of both steady and unsteady radiative transfer equations in oneand two-dimensional geometry by using a combined technique of the scaling positivity-preserving limiter in [33] and a new rotational positivity-preserving limiter. This combined limiter is simple to implement and we prove the properties of positivity-preserving and high order accuracy rigorously. Oneand two-dimensional numerical results are provided to verify the good properties of the positivity-preserving DG schemes.
منابع مشابه
Conservative high order positivity-preserving discontinuous Galerkin methods for linear hyperbolic and radiative transfer equations
We further investigate the high order positivity-preserving discontinuous Galerkin (DG) methods for linear hyperbolic and radiative transfer equations developed in [14]. The DG methods in [14] can maintain positivity and high order accuracy, but they rely both on the scaling limiter in [15] and a rotational limiter, the latter may alter cell averages of the unmodulated DG scheme, thereby affect...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...
متن کاملPositivity-preserving DG and central DG methods for ideal MHD equations
Ideal MHD equations arise in many applications such as astrophysical plasmas and space physics, and they consist of a system of nonlinear hyperbolic conservation laws. The exact density ρ and pressure p should be non-negative. Numerically, such positivity property is not always satisfied by approximated solutions. One can encounter this when simulating problems with low density, high Mach numbe...
متن کاملPositivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations
Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas, as standard numerical methods may fail in the presence of these areas. These equations also have steady state solutions in which the flux gradients are nonzero but exactly balanced by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016