Linearity of Dimension Functions for Semilinear G-spheres
نویسندگان
چکیده
In this paper, we show that the dimension function of every semilinear G-sphere is equal to that of a linear G-sphere for finite nilpotent groups G of order pnqm, where p, q are primes. We also show that there exists a semilinear G-sphere whose dimension function is not virtually linear for an arbitrary nonsolvable compact Lie group G.
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملA high-order approximation method for semilinear parabolic equations on spheres
We describe a novel discretisation method for numerically solving (systems of) semilinear parabolic equations on Euclidean spheres. The new approximation method is based upon a discretisation in space using spherical basis functions and can be of arbitrary order. This, together with the fact that the solutions of semilinear parabolic problems are known to be infinitely smooth, at least locally ...
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملControllability for Impulsive Semilinear Functional Differential Inclusions with a Non-compact Evolution Operator
We study a controllability problem for a system governed by a semilinear functional differential inclusion in a Banach space in the presence of impulse effects and delay. Assuming a regularity of the multivalued non-linearity in terms of the Hausdorff measure of noncompactness we do not require the compactness of the evolution operator generated by the linear part of inclusion. We find existenc...
متن کامل