Biophysical Characterization of Synthetic Imidazole and Pyrrole Containing Analogues of Netropsin and Distamycin that Target Specific DNA Sequences for the Treatment of Various Diseases
نویسندگان
چکیده
The development of small-molecules which target nucleic acids, more specifically the minor groove of DNA, in a sequence specific manner and control gene expression are currently being investigated as potential therapeutic compounds for the treatment of various diseases, including cancer, as well as viral and bacterial infections. The naturally occurring compounds netropsin and distamycin have been shown to demonstrate antitumor and antibacterial properties. Currently, there are synthetic efforts to create pyrrole and imidazole-containing polyamide derivatives of netropsin and distamycin that show potential as medicinal agents. Synthetic pyrrole and imidazole-containing polyamides are potentially useful for targeting and modulating the expression of genes, including those associated with cancer cell growth. The key challenges that must be overcome to realize this goal of using synthetic polyamides in the treatment of disease are the development of polyamides with low molar mass so the molecules can readily diffuse into cells and concentrate in the nucleus. In addition, the molecules must have appreciable water solubility, bind DNA sequence specifically, and with high affinity. As part of a systematic study within the authors’ laboratory, our goal is to develop polyamides which can be synthesized readily yet possess excellent sequence specificity, stronger binding affinity, high solubility in biological media and enhanced cell penetration and nuclear localization properties. There is a need to develop a library of modified polyamides which target DNA and exhibit improved biological properties. The present study is a systematic examination of the binding properties of various modified synthetic polyamide compounds. The synthetic polyamide derivatives presented have more potential as therapeutic candidates over other synthetic polyamides because of their increased water solubility, smaller molecular weights, and molecular design, thus, allowing them to penetrate into cells and localize in the nucleus. INDEX WORDS: DNA, minor groove, polyamides, netropsin, distamycin, imidazole, pyrrole, sequence specificity, gene control, surface plasmon resonance, isothermal titration calorimetry BIOPHYSICAL CHARACTERIZATION OF SYNTHETIC IMIDAZOLE AND PYRROLE CONTAINING ANALOGUES OF NETROPSIN AND DISTAMYCIN THAT TARGET SPECIFIC DNA SEQUENCES FOR THE TREATMENT OF VARIOUS DISEASES
منابع مشابه
The sequence specificity of alkylation for a series of benzoic acid mustard and imidazole-containing distamycin analogues: the importance of local sequence conformation.
The covalent sequence specificity of a series of nitrogen mustard and imidazole-containing analogues of distamycin was determined using modified sequencing techniques. The analogues tether benzoic acid mustard (BAM) and possess either one, two or three imidazole units. Examination of the alkylation specificity revealed that BAM produced guanine-N7 lesions in a pattern similar to conventional ni...
متن کاملStructural and dynamic characterization of the heterodimeric and homodimeric complexes of distamycin and 1-methylimidazole-2-carboxamide-netropsin bound to the minor groove of DNA.
NMR spectroscopy combined with molecular modeling was used to characterize a heterodimeric complex with Dst and 2-ImN bound in the minor groove of d(GCCTAACAAGG).d(CCTTGTTAGGC) (1:1:1 2-ImN.Dst.DNA complex). The imidazole-pyrrole-pyrrole ligand 2-ImN spans 5'-GTTA-3' of the TAACA.TGTTA binding site with the imidazole nitrogen specifically recognizing the guanine amino group. The Dst ligand lies...
متن کاملMolecular modelling of the interaction of carbocyclic analogues of netropsin and distamycin with d(CGCGAATTCGCG)2.
A molecular mechanics and molecular dynamics approach was used to examine the structure of complexes formed between the d(CGCGAATTCGCG)2 duplex and netropsin, distamycin, and four carbocyclic analogues of netropsin and distamycin (1-4). The resulting structures of the ligand-DNA model complexes and their energetics were examined. It is predicted that the compounds 1-4 should have a decreased af...
متن کاملBugs on Drugs Go GAGAA
Replacement of C-H in pyrrole with N: in imidazole allows for the formation of a hydrogen bond with this Seattle, Washington 98109 guanidine NH 2. In the context of a side-by-side dimer, a G/C base pair is contacted by an imidazole (Im) touching guanine and a pyrrole (Py) touching cytosine. For exam-Sometimes science fact resembles science fantasy, ple, GTA/CAT can be recognized by ImPyPy/PyPyP...
متن کاملThe molecular origin of DNA-drug specificity in netropsin and distamycin.
X-ray analysis of the complex of netropsin with the B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-BrC-G-C-G reveals that the antitumor antibiotic binds within the minor groove by displacing the water molecules of the spine of hydration. Netropsin amide NH furnish hydrogen bonds to bridge DNA adenine N-3 and thymine O-2 atoms occurring on adjacent base pairs and opposite helix strands, exactly as ...
متن کامل