Shreeram Abhyankar ( July 22 , 1930 – November 2 , 2012 )

نویسندگان

  • Shreeram Abhyankar
  • Shashikant Mulay
  • Avinash Sathaye
  • Yvonne Abhyankar
چکیده

S hreeram Abhyankar was an influential mathematician and an inspiring teacher. His infectious enthusiasm for research and steadfast devotion to teaching have been truly inspirational not only for us, his students, but for all who came in contact with him. His attractive and accessible lectures, delivered in his inimitable style, presented their mathematical content with such clarity that the audience was not just impressed, but sensed an irresistible invitation to try their hand at the topic. Whether it was algebraic geometry or algebra, he always preferred concrete over abstract and was admirably adept at detecting key elementary

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Plane Polynomial Curves

We study some properties of generator sequences of planar semigroups and give a method of construction of plane curves with one place at infinity with given generator sequences. We also discuss similar questions for polynomial curves. ∗We express our deep gratitude and appreciation for to Professor Shreeram S. Abhyankar for being a constant source of our mathematical inspiration.

متن کامل

Existence of Dicritical Divisors

We prove an existence theorem for dicritical divisors.

متن کامل

On the Compositum of Algebraically Closed Subfields

1. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math. vol. 77 (1955) pp. 575-592. 2. C. Chevalley, On the theory of local rings, Ann. of Math. vol. 44 (1943), pp. 680-708. 3. -, Introduction to the theory of algebraic functions of one variable, New York, 1951. 4. S. MacLane and O. F. G. Schilling, Zero-dimensional branches of rank one on algebraic varieties, Ann. of Math. ...

متن کامل

ar X iv : m at h / 01 07 14 2 v 1 [ m at h . A G ] 1 9 Ju l 2 00 1 Elliptic subfields and automorphisms of genus 2 function fields

We study genus 2 function fields with elliptic subfields of degree 2. The locus L2 of these fields is a 2-dimensional subvariety of the moduli space M2 of genus 2 fields. An equation for L2 is already in the work of Clebsch and Bolza. We use a birational parameterization of L2 by affine 2-space to study the relation between the j-invariants of the degree 2 elliptic subfields. This extends work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014