PET-guided three-dimensional treatment planning of intracavitary gynecologic implants.

نویسندگان

  • Sasa Mutic
  • Perry W Grigsby
  • Daniel A Low
  • James F Dempsey
  • William B Harms
  • Richard Laforest
  • Walter R Bosch
  • Tom R Miller
چکیده

PURPOSE Positron emission tomography (PET) provides physiologic information that is not available from computed tomography (CT) or magnetic resonance studies. PET images may allow more accurate delineation of three-dimensional treatment planning target volumes of brachytherapy gynecologic (GYN) implants. This study evaluates the feasibility of using PET as the sole source of target, normal structure, and applicator delineation for intracavitary GYN implant treatment planning. MATERIALS AND METHODS Standard Fletcher-Suit brachytherapy tandem and colpostat applicators were used for radiation delivery. After insertion of the applicator in the operating room, the patient was taken to a PET scanner, where 555 MBq (15 mCi) 18F-fluorodeoxyglucose (18F-FDG) was administered intravenously. Forty-five minutes later, three localization tubes containing 18F-FDG were inserted into the source afterloading compartments of the tandem and colpostat. A whole-pelvis scan was performed, and the images were transferred to a commercial brachytherapy three-dimensional treatment planning system. A Foley catheter was inserted into the urinary bladder while the patient was in the operating room. The regions of radioactivity in the three applicator tube image were contoured for reconstruction of the applicator, along with the bladder, rectum, and 18F-FDG-defined target volumes. A treatment plan was generated that included dose-volume histograms and three-dimensional dose distribution displays, allowing the physician an opportunity to determine if adequate target coverage and normal-tissue sparing had been obtained. For a more conservative approach, three-dimensional dose distributions and dose-volume histograms delivered with conventional source arrangements and loading could be observed. The accuracy of applicator localization from the PET images was verified using a water phantom containing two aluminum CT-compatible tandems. The PET-defined and CT scan applicator reconstructions were compared. RESULTS Feasibility of using PET images for treatment planning of brachytherapy intracavitary GYN implants has been demonstrated. A phantom study demonstrated applicator reconstruction accuracy in the axial direction to be better than 2 mm. Reconstruction accuracy in the longitudinal direction (principally craniocaudal) was similar to the PET scanner's voxel size of 4.3 mm. CONCLUSIONS Brachytherapy intracavitary GYN implant design has traditionally been based on patient tumor staging, palpation, and clinical experience. PET images have the potential to provide better spatial information about the relationship of tumor and normal structures to the applicator. This information can be used to optimize the delivery of radiation therapy treatments. Thus far, six patients have been scanned using this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation sigmoiditis mimicking sigmoid colon cancer after radiation therapy for cervical cancer: the implications of three-dimensional image-based brachytherapy planning

External-beam radiation therapy with intracavitary high-dose-rate brachytherapy is the standard treatment modality for advanced cervical cancer; however, late gastrointestinal complications are a major concern after radiotherapy. While radiation proctitis is a well-known side effect and radiation oncologists make an effort to reduce it, the sigmoid colon is often neglected as an organ at risk. ...

متن کامل

Emerging technology in cancer treatment: radiotherapy modalities.

This is a period of rapid developments in radiotherapy for malignant disease. New methods of targeting tumors with computed tomography (CT) virtual simulation, magnetic resonance imaging (MRI), and positron-emission tomography (PET) fusion provide the clinician with information heretofore unknown. Linear accelerators (linacs) with multileaf collimation (MLC) have replaced lead-alloy blocks. Ind...

متن کامل

Guided surgery for implant therapy.

New three-dimensional diagnostic and treatment planning technologies in implant dentistry have expanded on concepts of a team approach to the planning and placement of dental implants. The accurate and predictable placement of implants according to a computer-generated virtual treatment plan is now a reality, taking the virtual plan from the computer to the patient clinically. Recent advances i...

متن کامل

The use of trans-applicator intracavitary ultrasonography in brachytherapy for cervical cancer: phantom study of a novel approach to 3D image-guided brachytherapy

PURPOSE To assess the feasibility of applying trans-applicator intracavitary ultrasonography to image-guided brachytherapy for cervical cancer. MATERIAL AND METHODS For this experiment, a phantom was created and included a polyethylene tube, intended to simulate a tandem applicator, which was inserted into chicken meat and embedded in agar, along with magnetic resonance imaging (MRI)-compatib...

متن کامل

Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer

OBJECTIVE The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). METHODS A total of 79 patients with cervical cancer were enrolled to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of radiation oncology, biology, physics

دوره 52 4  شماره 

صفحات  -

تاریخ انتشار 2002