A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding.
نویسندگان
چکیده
Recent studies suggest that the endocannabinoid system modulates feeding. Despite the existence of central mechanisms for the regulation of food intake by endocannabinoids, evidence indicates that peripheral mechanisms may also exist. To test this hypothesis, we investigated (1) the effects of feeding on intestinal anandamide accumulation; (2) the effects of central (intracerebroventricular) and peripheral (intraperitoneal) administration of the endocannabinoid agonist anandamide, the synthetic cannabinoid agonist R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate (WIN55,212-2), and the CB1-selective antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR141716A) on food intake in rats; and (3) the effects of sensory deafferentation on the modulation of feeding by cannabinoids. Food deprivation produced a sevenfold increase in anandamide content in the small intestine but not in the brain or stomach. Refeeding normalized intestinal anandamide levels. Peripheral but not central administration of anandamide or WIN55,212-2 promoted hyperphagia in partially satiated rats. Similarly, peripheral but not central administration of SR141716A reduced food intake. Capsaicin deafferentation abolished the peripheral effects of both cannabinoid agonists and antagonists, suggesting that these agents modulate food intake by acting on CB1 receptors located on capsaicin-sensitive sensory terminals. Oleoylethanolamide, a noncannabinoid fatty ethanolamide that acts peripherally, prevented hyperphagia induced by the endogenous cannabinoid anandamide. Pretreatment with SR141716A enhanced the inhibition of feeding induced by intraperitoneal administration of oleoylethanolamide. The results reveal an unexpected role for peripheral CB1 receptors in the regulation of feeding.
منابع مشابه
نقش گیرندههای محیطی گلیسین در اخذ غذای وابسته به گیرندههای کانابینوئیدی
Background & Aim: Peripheral cannabinoid and glycine receptors are involved in food intake regulation. This study was conducted to investigate the possible interaction between these two receptors in regulating food intake. Methods: This is an experimental study which was conducted on forty male Wistar rats. In the first phase of the experiment, the rats simultaneously received intraperitonea...
متن کاملEffect of Cannabinoid Receptor Activation on Spreading Depression
Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...
متن کاملCapsazepine, a Transient Receptor Potential Vanilloid Type 1 (TRPV1) Antagonist, Attenuates Antinociceptive Effect of CB1 Receptor agonist, WIN55,212-2, in the Rat Nucleus Cuneiformis
Introduction: Nucleus cuneiformis (NCF), as part of descending pain inhibitory system, cooperates with periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) in supraspinal modulation of pain. Cannabinoids have analgesic effects in the PAG, RVM and NCF. The transient receptor potential vanilloid type 1(TRPV1) can be activated by anandamide and WIN55,212-2 as a cannabinoid receptor ago...
متن کاملAdditive effects of cannabinoid CB1 receptors blockade and cholecystokinin on feeding inhibition.
Cannabinoid CB1 receptor and cholecystokinin-1 (CCK(1)) receptors are located in peripheral nerve terminals of the gut, where they mediate satiety signals. Here we describe a detailed analysis of the interaction of both receptors in the control of feeding of food-deprived rats. Male Wistar rats were deprived for food 24h before testing. Rats were pre-treated with SR141716A (Rimonabant) or WIN 5...
متن کاملEffects of cannabinoids on neurotransmission.
The CB1 cannabinoid receptor is widely distributed in the central and peripheral nervous system. Within the neuron, the CB1 receptor is often localised in axon terminals, and its activation leads to inhibition of transmitter release. The consequence is inhibition of neurotransmission via a presynaptic mechanism. Inhibition of glutamatergic, GABAergic, glycinergic, cholinergic, noradrenergic and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 21 شماره
صفحات -
تاریخ انتشار 2002