Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes
نویسندگان
چکیده
Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.
منابع مشابه
Interaction of primary mammary bovine epithelial cells with biofilm-forming staphylococci associated with subclinical bovine mastitis
Background: Staphylococci are recognized worldwide as one of the most important etiological agents of bovine mastitis due to their virulence factors such as their ability to penetrate inside mammary epithelial cells and their ability to form biofilm. Aims: The objectives of this study were to establish a model of primary mammary epithelial cells origin...
متن کاملManipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection
The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination of Staphylococcus aureus in the host. To date, the majority of work on S. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium...
متن کاملIntracellular staphylococcus aureus: Live-in and let die
Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells.The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or fr...
متن کاملIntracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells.
We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureus mastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureus cells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that t...
متن کاملRibosomal alterations contribute to bacterial resistance against the dipeptide antibiotic TAN 1057.
TAN 1057-resistant Staphylococcus aureus and Escherichia coli strains were selected to elucidate the mechanism of resistance and the mode of action of this dipeptide antibiotic. Cell-free translation with isolated ribosomes and S150 fractions from sensitive and resistant S. aureus strains demonstrated that alterations in the ribosomes contribute to the resistance of the bacteria.
متن کامل