Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod‐shaped C. jejuni 81‐176 clones and the genetic determinants responsible for differences in morphology within 11168 strains
نویسندگان
چکیده
Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81-176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW-passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81-176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168-GS) was also identified. The PG muropeptide profile of 11168-GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168-O). Introduction of wild type pgp1 into 11168-GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell-to-cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub-optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.
منابع مشابه
Genomic variations leading to alterations in cell morphology of Campylobacter spp
Campylobacter jejuni, the most common cause of bacterial diarrhoeal disease, is normally helical. However, it can also adopt straight rod, elongated helical and coccoid forms. Studying how helical morphology is generated, and how it switches between its different forms, is an important objective for understanding this pathogen. Here, we aimed to determine the genetic factors involved in generat...
متن کاملBiofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions
During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In thi...
متن کاملPeptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni
The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating...
متن کاملA comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organ...
متن کاملInfluence of mutation in cj0183 and cj0588 genes for colonization abilities of Campylobacter jejuni in Caco-2 cells using confocal laser scanning microscope.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with homology to virulence factors found in other bacteria. Previous studies showed that single mutation in the cj0183 gene does not affect adhesion of C. jejuni to the Caco-2 cell line whereas protein encoded by cj0588 is involved in adherence to the Caco-2 cells. In the presented study differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 104 شماره
صفحات -
تاریخ انتشار 2017