Carbonic anhydrase C in white-skeletal-muscle tissue.
نویسندگان
چکیده
We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.
منابع مشابه
Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration
Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondri...
متن کاملCarbon dioxide transport and carbonic anhydrase in blood and muscle.
CO(2) produced within skeletal muscle has to leave the body finally via ventilation by the lung. To get there, CO(2) diffuses from the intracellular space into the convective transport medium blood with the two compartments, plasma and erythrocytes. Within the body, CO(2) is transported in three different forms: physically dissolved, as HCO(3)(-), or as carbamate. The relative contribution of t...
متن کاملHistochemical identification of fibre types in the hamstring muscles of phosphorylase kinase-deficient ICR/IAn and normal C3H mice.
The low-activity sulphonamide resistant isozyme of carbonic anhydrase 111 has been shown to be skeletal-muscle-specific in man (Carter et al., 1979), and preliminary experiments have demonstrated high activities of the homologous molecule in rabbit, bovine, sheep, baboon, pig, chicken, rat and mouse muscle (Jeffery & Carter, 1980). Several years ago a sulphonamide(Diamox)-resistant isoenzyme of...
متن کاملHydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile ...
متن کاملCarbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and sk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 205 3 شماره
صفحات -
تاریخ انتشار 1982