Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio

نویسندگان

  • Zhijian Mu
  • Aiying Huang
  • Jiupai Ni
  • Deti Xie
چکیده

Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the boundary line approach for predicting N2O emission ranges from Australian agricultural soils

This study aimed to assess the feasibility of predicting ranges in N2O emission with a boundary line approach using a few key driving factors. Intact soil cores (9 cm dia. and ~20 cm in depth) were collected from pasture, cereal cropping and sugarcane lands and incubated at various temperature and moisture conditions after addition of different forms of mineral nitrogen (NH4 and NO3). The pastu...

متن کامل

Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada

Agricultural soils can constitute either a net source or sink of the three principal greenhouse gases, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). We compiled the most up-to-date information available on the contribution of agricultural soils to atmospheric levels of these gases and evaluated the mitigation potential of various management practices in eastern Canada and northe...

متن کامل

Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model

Manure application is effective in promoting soil carbon sequestration, but its impact on N2O emission is not well understood. A field experiment was conducted in a maize-cultivated black soil in Northeast China with six treatments: inorganic fertilizer (NPK), 75% inorganic fertilizer N plus 25% pig (PM1) or chicken (CM1) manure N, 50% inorganic fertilizer N plus 50% pig (PM2) or chicken (CM2) ...

متن کامل

Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil

Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (CO...

متن کامل

Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale

Arable soils are a large source of nitrous oxide (N2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014