Effect of Multimodal Plasmon Resonances on the Optical Properties of Five-pointed Nanostars
نویسندگان
چکیده
The optical transmission and electric field distribution of plasmonic nanostructures dictate their performance in nano-optics and nano-biosensors. Here, we consider the use of hollow, five-pointed, star-shaped nanostructures made of Al, Ag, Au or Cu. We use simulations based on finite-difference time-domain and the discrete dipole approximation to identify the strongest plasmon resonan‐ ces in these structures. In particular, we were seeking plasmon resonances within the visible part of the spec‐ trum. The silver pentagrams exhibited the strongest such resonance, at a wavelength of about 530 nm. The visiblelight resonances of Au and Cu pentagrams were relative‐ ly weaker and red-shifted by about 50 nm. The main resonances of the Al pentagrams were in the ultra-violet. All the nanostars also showed a broad, dipolar-like resonance at about 1000 nm. Surprisingly, the maximum field intensities for the visible light modes were greatest along the flanks of the stars rather than at their tips, whereas those of the dipolar-like modes in the near-infrared were greatest at the tips of the star. These findings have practical implications for sensor design. The inclusion of a confor‐ mally hollow interior is beneficial because it provides additional ‘hot spots’.
منابع مشابه
Size-Controlled Synthesis of Gold Nanostars and Their Characterizations and Plasmon Resonances
Gold nanostar particles were synthesized using seed-mediated method. Au-seed was synthesized with the diameter of approximately 3 nm and a considerably low STDEV of less than 1 nm. Then, different amount of Au seed was introduced into the growth solution of nanostars and the influence of the changes in concentration of Au seed on the growth process was investigated. The size of gold nanostars i...
متن کاملAnalyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation
In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...
متن کاملTuning Plasmon Resonance of Gold Nanostars for Enhancements of Nonlinear Optical Response and Raman Scattering
Localized surface plasmon resonances (LSPRs) of metal nanostructures are highly related to the shape, which could greatly enhance the light−matter interaction at nanoscale. Here, we investigate the LSPRs of gold nanostars corresponding to the unique morphology and demonstrate surface-enhanced Raman scattering (SERS) activities and nonlinear refraction properties of two typical structures. By ad...
متن کاملLocalized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation
In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ra...
متن کاملLabel-free biosensing based on single gold nanostars as plasmonic transducers.
Gold nanostars provide high sensitivity for single nanoparticle label-free biosensing. The nanostars present multiple plasmon resonances of which the lower energy ones, corresponding to the nanostar tips and core-tip interactions, are the most sensitive to environmental changes. Streptavidin molecules are detected upon binding to individual, biotin-modified gold nanostars by spectral shifts in ...
متن کامل