Studies on mammalian glucoamylases with special reference to monkey intestinal glucoamylase.
نویسندگان
چکیده
1. Highly purified preparations of glucoamylase were obtained from liver, spleen and intestine of the monkey. The enrichment factor was lower for intestine (60-fold) compared with that of liver (1200-fold) and of spleen (2000-fold) but the final specific activities were of a similar magnitude. 2. The liver and spleen enzymes had maximum activity at pH4.8 whereas the intestinal enzyme showed an optimum at pH5.8. The K(m) values for both starch and maltose with spleen and liver enzymes were higher than for the intestinal enzyme. With the intestinal enzyme, the V(max.) values were higher for both starch and maltose than those of the spleen and liver enzymes. 3. Gel filtration on Sephadex G-200 under identical conditions revealed that liver and spleen enzymes emerge from the columns much later than the intestinal enzyme. 4. Evidence is presented that the glucoamylase activity of the intestinal mucosa is exhibited by the maltase II fraction. 5. Tris, pentaerythritol and turanose inhibited glucoamylase from all the three tissues, but turanose inhibited the spleen and liver enzymes to a higher degree than the intestinal enzyme.
منابع مشابه
Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro.
Mutations Asn20-->Cys/Ala27-->Cys (SS), Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Gly137-->Ala, Tyr312-->Trp and Ser436-->Pro in Aspergillus awamori glucoamylase, along with a mutation inserting a seven-residue loop between Tyr311 and Gly314 (311-314 Loop), were made to increase glucose yield from maltodextrin hydrolysis. No active Lys108-->Met glucoamylase was found in the supernatant after bein...
متن کاملMutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly.
Glucoamylase mutations to reduce isomaltose formation from glucose condensation and thus increase glucose yield from starch hydrolysis were designed to produce minor changes in the active site at positions not totally conserved. Tyr175-->Phe and Ser411-->Gly glucoamylases had catalytic efficiencies on DP 2-7 maltooligosaccharides like those of wild-type glucoamylase, while the catalytic efficie...
متن کاملEfficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R. oryzae gl...
متن کاملGlucoamylase: structure/function relationships, and protein engineering.
Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases ...
متن کاملCrystal structure and evolution of a prokaryotic glucoamylase.
The first crystal structures of a two-domain, prokaryotic glucoamylase were determined to high resolution from the clostridial species Thermoanaerobacterium thermosaccharolyticum with and without acarbose. The N-terminal domain has 18 antiparallel strands arranged in beta-sheets of a super-beta-sandwich. The C-terminal domain is an (alpha/alpha)(6) barrel, lacking the peripheral subdomain of eu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 117 5 شماره
صفحات -
تاریخ انتشار 1970