Rebamipide suppresses TLR-TBK1 signaling pathway resulting in regulating IRF3/7 and IFN-α/β reduction

نویسندگان

  • Naotaka Ogasawara
  • Makoto Sasaki
  • Yukimi Itoh
  • Kentaro Tokudome
  • Yoshihiro Kondo
  • Yoshitsugi Ito
  • Satoshi Tanida
  • Takeshi Kamiya
  • Hiromi Kataoka
  • Takashi Joh
  • Kunio Kasugai
چکیده

TANK-binding kinase 1 (TBK1) regulates the interferon regulatory factor (IRF) 3 and IRF7 activation pathways by double strand RNA (dsRNA) via Toll-like receptor (TLR) 3 and by lipopolysaccharide (LPS) via TLR4. Rebamipide is useful for treating inflammatory bowel disease (IBD). Although IBD is associated with nuclear factor-κB (NF-κB), any association with the TBK1-IRF pathway remains unknown. How rebamipide affects the TBK1-IRF pathway is also unclear. We analyzed the relationship between IBD (particularly ulcerative colitis; UC) and the TLR-TBK1-IRF3/7 pathway using human colon tissue, a murine model of colitis and human colonic epithelial cells. Inflamed colonic mucosa over-expressed TKB1, NAP1, IRF3, and IRF7 mRNA compared with normal mucosa. TBK1 was mainly expressed in inflammatory epithelial cells of UC patients. The expression of TBK1, IRF3, IRF7, IFN-α and IFN-β mRNA was suppressed in mice given oral dextran sulfate-sodium (DSS) and daily rectal rebamipide compared with mice given only DSS. Rebamipide reduced the expression of TBK1, IRF3 and IRF7 mRNA induced by LPS/dsRNA, but not of NF-κB mRNA in colonic epithelial cells. Rebamipide might suppress the TLR-TBK1 pathway, resulting in IRF3/7-induction of IFN-α/β and inflammatory factors. TBK1 is important in the induction of inflammation in patients with UC. If rebamipide represses the TLR-TBK1 pathway, then rectal administration should suppress inflammation of the colonic mucosa in patients with UC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1

TANK-binding kinase 1 (TBK1) plays an essential role in Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I)-mediated induction of type I interferon (IFN; IFN-α/β) and host antiviral responses. How TBK1 activity is negatively regulated remains largely unknown. We report that TNF receptor-associated factor (TRAF)-interacting protein (TRIP) promotes proteasomal degradation of TBK1...

متن کامل

HSPD1 Interacts with IRF3 to Facilitate Interferon-Beta Induction

The production of IFN- I (IFN-α/β) is one of the earliest and most important host-protective responses. Interferon regulatory factor 3 (IRF3) is a critical transcriptional factor in the IFN-β signaling pathway. Although significant progress has been achieved in the regulation of IRF3, the process may be more complicated than previously considered. In the present study, heat shock protein 60 (HS...

متن کامل

PLP2 of Mouse Hepatitis Virus A59 (MHV-A59) Targets TBK1 to Negatively Regulate Cellular Type I Interferon Signaling Pathway

BACKGROUND Coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus (SCoV) and mouse hepatitis virus A59 (MHV-A59) have evolved strategies to disable the innate immune system for productive replication and spread of infection. We have previously shown that papain-like protease domain 2 (PLP2), a catalytic domain of the nonstructural protein 3 (nsp3) of MHV-A59, encodes a deubi...

متن کامل

Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production.

Toll-like receptors are a group of pattern-recognition receptors that play a crucial role in "danger" recognition and induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral dsRNA, resulting in the induction of the anti-viral molecule, IFN-β. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling i...

متن کامل

Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin.

Toll-like receptors (TLRs) play important roles in induction of innate immune responses for both host defense against invading pathogens and wound healing after tissue injury. Since dysregulation of TLR-mediated immune responses is closely linked to many chronic diseases, modulation of TLR activation by small molecules may have therapeutic potential against such diseases. Expression of the majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2011