Rutin suppresses high glucose-induced ACTA2 and p38 protein expression in diabetic nephropathy
نویسندگان
چکیده
The present study investigated the effect of rutin on high glucose-induced actin, α2, smooth muscle, aorta (ACTA2) and p38 protein expression in diabetic nephropathy (DN). Human mesangial cells were divided into a control group, high glucose-induced mesangial cell group, high glucose + captopril group, and high glucose + rutin group (low, middle and high doses of rutin). Cell viability, adenosine 5'-triphosphate (ATP) content, cell cycle, and ACTA2 and p38 protein expression were examined using MTT assay, ATP assay kit, flow cytometry and immunofluorescence staining in cultured human mesangial cells, respectively. Cell viability, ATP content, and ACTA2 and p38 expression increased significantly in high glucose-induced mesangial cells (P<0.05). However, at concentrations of 0.2, 0.4 and 0.8 µmol/l rutin was able to inhibit high glucose-induced human mesangial cell viability, ATP content, and ACTA2 and p38 expression and improve the cell cycle progression of mesangial cells. In conclusion, ACTA2 and p38 proteins may have important roles in DN. Rutin may inhibit the expression of ACTA2 and p38 and may be utilized in the prevention and treatment of DN.
منابع مشابه
Rutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact me...
متن کاملFollistatin-like 3 suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose.
Mesangial cells (MCs) proliferation and extracellular matrix (ECM) accumulation are early features of diabetic nephropathy. Follistatin-like 3 (FSTL3), a member of follistatin family, has been shown to regulate insulin and glucagon sensitivities in diet-induced obesity and insulin resistance. However, the role of FSTL3 in diabetic nephropathy is still unclear. Therefore, in this study, we inves...
متن کاملInvolvement of MAPKs in ICAM-1 expression in glomerular endothelial cells in diabetic nephropathy.
Inflammatory processes are involved in the pathogenesis of diabetic nephropathy. The aim of this study was to clarify the role of mitogen-activated protein kinase (MAPK) pathways for induction of intercellular adhesion molecule-1 (ICAM-1) expression in glomerular endothelial cells under diabetic conditions. We examined the expression of ICAM-1 in the kidneys of experimental diabetic rats. Human...
متن کاملResveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway
Resveratrol (RSV) has been shown to have a renoprotective effect against diabetic nephropathy, but the underlying mechanisms of this have not been fully elucidated. The aim of the current study was to explore the mechanisms responsible for the therapeutic effects of RSV in rat mesangial cells in vitro and in a rat model of diabetic nephropathy. The viability of CRL-2573 rat mesangial cells and ...
متن کاملOlmesartan Prevents Microalbuminuria in db/db Diabetic Mice Through Inhibition of Angiotensin II/p38/SIRT1-Induced Podocyte Apoptosis.
BACKGROUND/AIMS Blockage of the renin-angiotensin II system (RAS) prevents or delays albuminuria in diabetic patients. The aim of this study was to investigate the inhibitory mechanism of the angiotensin receptor blocker olmesartan on albuminuria in a murine model of diabetic nephropathy. METHODS Male db/db diabetic mice were fed with placebo or 20 mg/kg olmesartan by daily gavage for 12 week...
متن کامل