An Inviscid Regularization of the One-Dimensional Euler equations

نویسندگان

  • Gregory J. Norgard
  • Kamran Mohseni
چکیده

This paper examines an averaging technique in which the nonlinear flux term is expanded and the convective velocities are passed through a low-pass filter. It is the intent that this modification to the nonlinear flux terms will result in an inviscid regularization of the homentropic Euler equations and Euler equations. The physical motivation for this technique is presented and a general method is derived, which is then applied to the homentropic Euler equations and Euler equations. These modified equations are then examined, discovering that they share the conservative properties and traveling wave solutions with the original equations. As the averaging is diminished it is proven that the solutions converge to weak solutions of the original equations. Finally, numerical simulations are conducted finding that the regularized equations appear smooth and capture the relevant behavior in shock tube simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness for the 2d Boussinesq System without Heat Diffusion and with Either Anisotropic Viscosity or Inviscid Voigt-α Regularization

We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work improves the global well-posedness results established recently by R. Danchin and M. Paicu for the Boussinesq system with anisotropic viscosity and zero diffusion. Although we follow some of their...

متن کامل

Higher-order Global Regularity of an Inviscid Voigt-regularization of the Three-dimensional Inviscid Resistive Magnetohydrodynamic Equations

We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive Magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in bot...

متن کامل

Inviscid Compressible Flow in Meridional Plane of an Axial Flow Compressor

In this paper it is attempted to investigate the behavior of an inviscid flow in the meridional plane of an axial flow compressor. For this purpose the 3-D unsteady Euler equations in cylindrical coordinate are averaged in tangential direction. Therefore, the equations are reduced to a 2-D system. By averaging the tangential component of momentum equation, a blade force will result. Axial and r...

متن کامل

A New Regularization of the One-Dimensional Euler and Homentropic Euler Equations

This paper examines an averaging technique in which the nonlinear flux term is expanded and the convective velocities are passed through a low-pass filter. It is the intent that this modification to the nonlinear flux terms will result in an inviscid regularization of the homentropic Euler equations and Euler equations. The physical motivation for this technique is presented and a general metho...

متن کامل

A New Potential Regularization of the One-Dimensional Euler and Homentropic Euler Equations

This paper examines an averaging technique in which the nonlinear flux term is expanded and the convective velocities are passed through a low-pass filter. It is the intent that this modification to the nonlinear flux terms will result in an inviscid regularization of the homentropic Euler equations and Euler equations. The physical motivation for this technique is presented and a general metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009