Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy.

نویسندگان

  • M Esclapez
  • J C Hirsch
  • Y Ben-Ari
  • C Bernard
چکیده

Temporal lobe epilepsy (TLE) in humans and animals is associated with axonal sprouting of glutamatergic neurons and neosynaptogenesis in the hippocampal formation. We examined whether this plasticity of excitatory pathways contributes to an increased level of glutamatergic excitation in the CA1 region of rats experiencing chronic spontaneous limbic seizures following kainic acid or pilocarpine treatment. In chronic cases, we report an extensive axonal sprouting of CA1 pyramidal neurons, with many axonal branches entering the pyramidal cell layer and stratum radiatum, regions that are not innervated by axonal collaterals of CA1 pyramidal neurons in control animals. Concurrently with this anatomical reorganization, a large increase of the spontaneous glutamatergic drive is observed in the dendrites and somata of CA1 pyramidal cells. Furthermore, electrical activation of the reorganized CA1 associational pathway evokes epileptiform bursts in CA1 pyramidal cells. These findings suggest that reactive plasticity could contribute to the hyperexcitability of CA1 pyramidal neurons and to the propagation of seizures in these two models of TLE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy.

Temporal lobe epilepsy is the most common type of epilepsy in adults, and its pathophysiology remains unclear. Layer II stellate cells of the entorhinal cortex, which are hyperexcitable in animal models of temporal lobe epilepsy, provide the predominant synaptic input to the hippocampal dentate gyrus. Previous studies have ascribed the hyperexcitability of layer II stellate cells to GABAergic i...

متن کامل

Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule ce...

متن کامل

Dipeptidyl peptidase-4 inhibitor ameliorates status epilepticus seizures and cognitive disturbances in a rat model of temporal lobe epilepsy

Background and Objective: In temporal lobe epilepsy (TLE), recurrent seizures accompany with cognitive deficit. In some patients, the current medications cannot provide satisfactory control of seizures, therefore new drugs that act through different mechanisms are required. In the present study, the useful effect of dipeptidyl peptidase-4 inhibitor was evaluated in experimental model of tempora...

متن کامل

Recurrent circuits in layer II of medial entorhinal cortex in a model of temporal lobe epilepsy.

Patients and laboratory animal models of temporal lobe epilepsy display loss of layer III pyramidal neurons in medial entorhinal cortex and hyperexcitability and hypersynchrony of less vulnerable layer II stellate cells. We sought to test the hypothesis that loss of layer III pyramidal neurons triggers synaptic reorganization and formation of recurrent, excitatory synapses among layer II stella...

متن کامل

Contributions of mossy fiber and CA1 pyramidal cell sprouting to dentate granule cell hyperexcitability in kainic acid-treated hippocampal slice cultures.

Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 408 4  شماره 

صفحات  -

تاریخ انتشار 1999