Bilastine vs. hydroxyzine: occupation of brain histamine H1-receptors evaluated by positron emission tomography in healthy volunteers

نویسندگان

  • Magí Farré
  • Clara Pérez-Mañá
  • Esther Papaseit
  • Esther Menoyo
  • Marta Pérez
  • Soraya Martin
  • Santiago Bullich
  • Santiago Rojas
  • José-Raúl Herance
  • Carlos Trampal
  • Luis Labeaga
  • Román Valiente
چکیده

AIM A close correlation exists between positron emission tomography (PET)-determined histamine H1 -receptor occupancy (H1 RO) and the incidence of sedation. Antihistamines with H1 RO <20% are classified as non-sedating. The objective was to compare the H1 RO of bilastine, a second generation antihistamine, with that of hydroxyzine. METHODS This randomized, double-blind, crossover study used PET imaging with [(11) C]-doxepin to evaluate H1 RO in 12 healthy males (mean age 26.2 years), after single oral administration of bilastine (20 mg), hydroxyzine (25 mg) or placebo. Binding potentials and H1 ROs were calculated in five cerebral cortex regions of interest: frontal, occipital, parietal, temporal, insula. Plasma bilastine concentrations, subjective sedation (visual analogue scale), objective psychomotor performance (digital symbol substitution test), physiological variables and safety (adverse events, AEs), were also evaluated. RESULTS The mean binding potential of all five regions of interest (total binding potential) was significantly greater with bilastine than hydroxyzine (mean value 0.26 vs. 0.13, P < 0.01; mean difference and 95% CI -0.130 [-0.155, 0.105]). There was no significant difference between bilastine and placebo. Overall H1 RO by bilastine was significantly lower than that by hydroxyzine (mean value -3.92% vs. 53.95%, P < 0.01; mean difference and 95% CI 57.870% [42.664%, 73.075%]). There was no significant linear relationship between individual bilastine plasma concentrations and total binding potential values. No significant between-treatment differences were observed for sedation and psychomotor performance. Twenty-six non-serious AEs were reported. Sleepiness or sedation was not reported with bilastine but appeared in some subjects with hydroxyzine. CONCLUSIONS A single oral dose of bilastine 20 mg had minimal H1 RO, was not associated with subjective sedation or objective impairment of psychomotor performance and was devoid of treatment-related sedative AEs, thus satisfying relevant subjective, objective and PET criteria as a non-sedating antihistamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11c]doxepin.

The aim of the present study is to evaluate the validity of the simplified reference tissue model (SRTM) and of Logan graphical analysis with reference tissue (LGAR) for quantification of histamine H1 receptors (H1Rs) by using positron emission tomography (PET) with [11C]doxepin. These model-based analytic methods (SRTM and LGAR) are compared to Logan graphical analysis (LGA) and to the one-tis...

متن کامل

Bilastine: a new antihistamine with an optimal benefit-to-risk ratio for safety during driving.

INTRODUCTION Rational selection of a second-generation H1-antihistamine requires efficacy and safety considerations, particularly regarding central nervous system (CNS) effects (cognitive and psychomotor function), potential for driving impairment, minimal sedative effects and a lack of interactions. This review evaluates the key safety features of the non-sedating antihistamine, bilastine, dur...

متن کامل

[11C]Doxepin binding to histamine H1 receptors in living human brain: reproducibility during attentive waking and circadian rhythm

Molecular imaging in neuroscience is a new research field that enables visualization of the impact of molecular events on brain structure and function in humans. While magnetic resonance-based imaging techniques can provide complex information at the level of system, positron emission tomography (PET) enables determination of the distribution and density of receptor and enzyme in the human brai...

متن کامل

Bilastine and the central nervous system.

Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the dru...

متن کامل

Effects of chlorpheniramine and hydroxyzine administration, as histamine H1- receptor antagonists, on the nociception threshold of cholestatic rats

Introduction: The elevated endogenous opioid tone in cholestasis is associated with changes including an increase in the nociception threshold. We aimed to study the effect of chlorpheniramine and hydroxyzine, H1-receptor antagonists, on modulation of nociception in a model of elevated endogenous opioid tone, cholestasis. Methods: Cholestasis was induced by ligation of main bile duct using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2014