Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities.
نویسندگان
چکیده
Nano-aluminum is being used in increasing quantities as energetic material. This research addresses the transport of two types of nanosized aluminum particles (with aluminum oxide, or carboxylate ligand coating, Alex and L-Alex, respectively) through sand columns along with associated environmental impacts on soil systems. Surface phenomena and pH are variables controlling the transport of nano-aluminum particles through porous media. pH environment controls solubility and electrostatic interactions between nano-aluminum particles and porous media. (i.e., changes in point of zero charge, agglomeration, etc.). Concentrations (up to 17 mg/L) far greater than the World Health Organization guideline for Al in drinking water (0.2 mg/L) were measured in columns' leachates. Plant uptake studies, mineralization of radiolabeled glucose test and Microtox test were used to investigate the environmental impacts of nano-aluminum on soil communities and plants. It appears that the presence of nano-aluminum particles did not have an adverse effect on the growth of California red kidney bean (Phaseolus vulgaris) and rye grass (Lolium perenne) plants in the concentration range tested. California red beans did not show uptake of aluminum, while the situation was different for rye grass where a 2.5-fold increase in Al concentration in the leaves was observed as compared with control tests. Nano-aluminum particles in suspension do not appear to have an impact on the metabolic activity of Vibrio fischeri. However, when the nano-aluminum particles were amended to the soil, Alex aluminum resulted in a 50% reduction of light output at concentrations below 5000 mg/L soil suspension concentration while L-Alex showed a similar effect at around 17,500 mg/L and the control soil at 37,500 mg/L. Soil respiration studies show that there are not statistical differences between the time and sizes of peaks in CO(2) production and the total mineralization of glucose.
منابع مشابه
سرنوشت باکتریهای گرم - منفی آزاد شده از کودهای آلی مختلف در دو خاک استان همدان
Organic fertilizers are the sources of many human-pathogenic microorganisms which potentially threaten the human health. This study was carried out to explore the possible effects of soil and manure types on filtration, transport and fate of manure-borne bacteria through undisturbed soil columns. The manure treatments consisted of cow manure, poultry manure and sewage sludge which were distribu...
متن کاملسرنوشت باکتریهای گرم - منفی آزاد شده از کودهای آلی مختلف در دو خاک استان همدان
Organic fertilizers are the sources of many human-pathogenic microorganisms which potentially threaten the human health. This study was carried out to explore the possible effects of soil and manure types on filtration, transport and fate of manure-borne bacteria through undisturbed soil columns. The manure treatments consisted of cow manure, poultry manure and sewage sludge which were distribu...
متن کاملTransport Characteristics of Green-Tea Nano-scale Zero Valent Iron as a Function of Soil Mineralogy
The transport characteristics of iron nanoparticles prepared with a green tea, polyphenol-rich solution, were investigated for two granular media, pure silica sand and sand coated with aluminium hydroxide. The GT-nZVI injection caused a sharp decrease in the effluent pH and increase in the redox potential, which is attributed to the presence of free Fe and polyphenols in the suspension, respect...
متن کاملEcological Drivers of Ecosystem Diversity in Sahelian Rangeland of Niger
Description of vegetation patterns associated with environmental factors such as grazing, climate, landforms, substrate variables etc. are helpful for land management planning. This study used new synecological tools to investigate plants composition and to provide ecological descriptions of plants communities of communal pastures in Sahelian Ecological Zone of Niger. Vegetation and several env...
متن کاملنقش رشد و پوسیدگی ریشه گیاه ذرت در انتقال باکتری اشریشیاکلی در خاک تحت شرایط جریان اشباع
Macrospore created by decaying plant root provides pathways for rapid transport of pollutants in soil profile. The main objective of this study was quantitative analysis of the effect of plant root (Zea mays L.) on bacterial and chloride transport through soil. Experiments were conducted in 9 soil columns packed uniformly with loamy sand. The treatments were bare soil, bare soil with corn (Zea ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental research
دوره 106 3 شماره
صفحات -
تاریخ انتشار 2008