Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system.
نویسندگان
چکیده
The purposes of this study were 1) to assess the effects of 3 high-concentrate diets on enteric CH(4) production, total tract digestibility, and rumen fermentation of beef cattle, and 2) to evaluate, by life cycle assessment, the potential effects of these feeding systems on the environment. Six bulls (age of 12.4 mo and BW of 417 kg at midexperiment) of the Blond d'Aquitaine breed were assigned to 3 dietary treatments in a replicated 3 × 3 Latin square design. Diets consisted of 1) 49% natural grassland hay, 41% ground corn grain, and 10% soybean meal (hay); 2) 63% corn silage, 21% ground corn grain, and 16% soybean meal (CS); and 3) 70% ground corn grain, 16% soybean meal, and 14% wheat straw (CG). Daily CH(4) emission (g/d), measured using the sulfur hexafluoride tracer technique, was similar for the hay and CS diets and was 56% greater than for the CG diet (P < 0.001). This difference between diets was maintained when CH(4) output was expressed by unit of feed intake (P < 0.001) or digested feed (P < 0.001). Gross energy intake loss as CH(4) averaged 6.9% for the hay and CS diets and 3.2% for the CG diet (P < 0.001). Organic matter intake and GE intake did not differ between diets. Organic matter digestibility was less for the hay diet than for the CS and CG diets (P=0.008). Digestibility of NDF was greatest for the hay diet, intermediate for the CS diet, and least for the CG diet (P=0.02), with ADF digestibility being similar between the hay and CS diets and greater than for the CG diet (P < 0.001). The rumen pH at 5 h postfeeding was less for animals fed the CG diet compared with those fed the other 2 diets (on average, 5.1 vs. 5.9, respectively; P < 0.001). Total CH(4) emission (enteric + manure) was least for the CG diet, whereas N(2)O and CO(2) emissions were greatest for the CG diet. Total greenhouse gas emissions were least for the CG diet when C sequestration by grasslands was not taken into account.
منابع مشابه
Greenhouse Gas Emissions from Livestock and Poultry
In 2008 the Environmental Protection Agency (EPA) estimated that only 6.4% of U.S. greenhouse gas (GHG) emissions originated from agriculture. Of this amount, 53.5% comes from animal agriculture. Agricultural activities are the largest source of N2O emissions in the U.S. accounting for 69% of the total N2O emissions for 2009. In animal agriculture, the greatest contributor to methane emissions ...
متن کاملMeta-Analysis of Methane Mitigation Strategies: Improved Predictions of Mitigation Potentials and Production Implications
The aim of this study was to use meta-analysis to identify the enteric methane (CH4) mitigation strategy that reduced CH4 emission without lowering production. To this end, a database initially developed was updated, compiling data from 61 publications (233 experiments) for various observations in dairy cattle on effects of hydrogen sink (H-sink), ionophore, lipid and conc...
متن کاملRuminant Livestock and Greenhouse‐Gases (A Nutritionist Perspective)
Greenhouse gases have been of serious global concern to environmentalists. Enteric ruminal fermentation and manure are seen to be responsible for global warming. Based on a better understanding of positive tan-nin effects on ruminant nutrition, the feeding value of browse trees and shrubs containing tannin, their roles on methanogenic rumen microbes in overcoming the production of enteric ferme...
متن کاملEstimation and Modeling of Biogas Production in Rural Small Landfills (Case Study: Chaharmahaal and Bakhtiari and Yazd Rural Areas)
One of the main factors contributing to greenhouse gas emissions in the environment is the production of pollutant gases in landfills. Collecting the landfill gases (LFG) effectively reduces the emission of gasses from the landfill site. A precise collection system for LFG can create the potential for energy generation in addition to emissions reduction. However, in Iran, the implementation of ...
متن کاملGenomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.
Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 89 8 شماره
صفحات -
تاریخ انتشار 2011