A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space

نویسندگان

  • Andrea Canessa
  • Agostino Gibaldi
  • Manuela Chessa
  • Marco Fato
  • Fabio Solari
  • Silvio P Sabatini
چکیده

Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO-GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realistic CG Stereo Image Dataset with Ground Truth Disparity Maps

Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, research in some branches of the field has been constrained due to the few number of stereo datasets with ground truth disparity maps available. Having available a large dataset of stereo images with ground truth disparity maps would boos...

متن کامل

Segmentation semi-automatique en plans pour la génération de cartes denses de disparités Semi-automatic Planar Segmentation Applied to the Generation of Dense Disparity Maps

This work falls under computer vision framework and more precisely planar segmentation applied to the generation of dense disparity maps. The goal is to produce new stereoscopic images with ground truth in order to evaluate and to compare precisely stereovision algorithms. We consider piecewise planar scenes and we propose a semi-automatic segmentation method based on the active contour models ...

متن کامل

Optimizing Disparity Candidates Space in Dense Stereo Matching

In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...

متن کامل

An efficient Stereo matching method to reduce disparity quantization error

Efficiently utilizing the stereo Images to generate a desirable semi dense disparity map is a challenging problem. Disparity image is a projected geometric space contains more primitive information directly computed from stereo Images. Stereo matching is considered as difficult in image processing due to complexity and structure ambiguity. In this Paper, we propose a novel efficient disparity i...

متن کامل

Stereo Ground Truth with Error Bars

Creating stereo ground truth based on real images is a measurement task. Measurements are never perfectly accurate: the depth at each pixel follows an error distribution. A common way to estimate the quality of measurements are error bars. In this paper we describe a methodology to add error bars to images of previously scanned static scenes. The main challenge for stereo ground truth error est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017