A Stratified Flow-driven Route to Monodisperse Unilamellar Lipid Vesicles
نویسندگان
چکیده
Giant unilamellar vesicles (GUVs) are good models of living cells, owing to their size and lamellarity. Compartmentalization within lipid vesicles has been exploited for the study of membrane behavior, lipid mechanics and a variety of biological processes, though their synthesis is not straightforward. We describe the development of a stratified flow driven microfluidic approach to GUV assembly that will afford control over size, lamellarity and membrane composition.
منابع مشابه
On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano- to micrometer size range, an extrusion step should be included in conventional hand-shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomol...
متن کاملSpontaneously formed unilamellar vesicles with path-dependent size distribution.
We observe the spontaneous formation of path-dependent monodisperse and polydisperse phospholipid unilamellar vesicles (ULV) from two different equilibrium morphologies specifically, disklike micelles and extended lamellae, respectively. On heating beyond a temperature Tc, low temperature disklike micelles, or so-called bicelles, transform into lamellae. Dilution of the lamellar phase, at a fix...
متن کاملElectroformation of Giant Unilamellar Vesicles on Stainless Steel Electrodes
Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming comp...
متن کاملSpontaneously formed monodisperse biomimetic unilamellar vesicles: the effect of charge, dilution, and time.
Using small-angle neutron scattering and dynamic light scattering, we have constructed partial structural phase diagrams of lipid mixtures composed of the phosphatidylcholines dimyristoyl and dihexanoyl doped with calcium ions (Ca2+) and/or the negatively charged lipid, dimyristoyl phosphatidylglycerol (DMPG). For dilute solutions (lipid concentration < or =1 wt %), spontaneously forming unilam...
متن کاملUnilamellar vesicle formation and encapsulation by microfluidic jetting.
Compartmentalization of biomolecules within lipid membranes is a fundamental requirement of living systems and an essential feature of many pharmaceutical therapies. However, applications of membrane-enclosed solutions of proteins, DNA, and other biologically active compounds have been limited by the difficulty of forming unilamellar vesicles with controlled contents in a repeatable manner. Her...
متن کامل