Cell-vertex discretization of shallow water equations on mixed unstructured meshes
نویسندگان
چکیده
Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization of shallow water equations is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of triangular cell-vertex discretization. Mixed meshes composed of triangles and quads combine benefits of both. In particular, triangular transitional zones can be used to join quadrilateral meshes of differing resolution. Based on a set of examples involving shallow water equations it is shown that mixed meshes offer a viable approach provided some background biharmonic viscosity (or the biharmonic filter) is added to stabilize the triangular part of the mesh.
منابع مشابه
Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids
We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of cons...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملTwo - dimensional Sediment Transport models in Shallow Water equations . A second order finite volume approach on unstructured meshes . ∗
In this paper we study the numerical approximation of bedload sediment transport due to shallow layer flows. The hydrodynamical component is modeled by a 2D shallow water system and the morphodynamical component by a solid transport discharge formula that depends on the hydrodynamical variables. The coupled system can be written as a nonconservative hyperbolic system. To discretize it, first we...
متن کاملAn entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry
We design an arbitrary high order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly p...
متن کاملOn the C-property and Generalized C-property of Residual Distribution for the Shallow Water Equations
In this paper we consider the discretization the Shallow Water equations by means of Residual Distribution (RD) schemes, and review the conditions allowing the exact preservation of some exact steady solutions. These conditions are shown to be related to both the type of spatial approximation and to the quadrature used to evaluate the cell residual. Numerical examples are shown to validate the ...
متن کامل